首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2156篇
  免费   382篇
  国内免费   610篇
测绘学   10篇
地球物理   675篇
地质学   1826篇
海洋学   72篇
天文学   8篇
综合类   61篇
自然地理   496篇
  2024年   15篇
  2023年   31篇
  2022年   51篇
  2021年   57篇
  2020年   55篇
  2019年   54篇
  2018年   42篇
  2017年   48篇
  2016年   51篇
  2015年   60篇
  2014年   59篇
  2013年   82篇
  2012年   131篇
  2011年   92篇
  2010年   68篇
  2009年   97篇
  2008年   132篇
  2007年   194篇
  2006年   188篇
  2005年   163篇
  2004年   171篇
  2003年   134篇
  2002年   126篇
  2001年   120篇
  2000年   111篇
  1999年   116篇
  1998年   111篇
  1997年   97篇
  1996年   86篇
  1995年   65篇
  1994年   60篇
  1993年   69篇
  1992年   34篇
  1991年   39篇
  1990年   32篇
  1989年   22篇
  1988年   27篇
  1987年   29篇
  1986年   16篇
  1985年   6篇
  1981年   1篇
  1980年   2篇
  1978年   3篇
  1954年   1篇
排序方式: 共有3148条查询结果,搜索用时 15 毫秒
101.
The Gangdese batholith, more than 2500 km in length, is composed mainly of JurassicMiocene igneous rocks. This batholith is one of the most important constituents of the Tibetan orogenesis and provides an ideal place for study of Neo-Tethyan ocean geodynamic evolution and plateau uplift. Recent studies on the Gangdese Jurassic felsic magmatism highlight its juvenile source. However, important aspects concerning the genesis of the juvenile magmatism and related deep geodynamic evolution are still unclear. Here, we report detailed petrological, geochronological, geochemical, whole-rock Sr-Nd isotopic, and in situ Sr-Hf isotopic data for a recently identified hornblende gabbro in the Dongga area, southern Lhasa sub-block. This hornblende gabbro is dominated by hornblende and plagioclase, dated at Early Jurassic(ca. 180–190 Ma), and characterized by a narrow compositional range in SiO_2(49.38wt%–52.27wt%), MgO(4.08wt%–7.00wt%), FeO(10.43wt%–11.77wt%), Na_2O(2.58wt%–3.51wt%), and K_2O(0.48wt%–1.53wt%). It has depleted isotopic signatures, with whole-rock(~(87)Sr/~(86)Sr)i ratios of 0.7033–0.7043, ε_(Nd)(t) values of +4.90 to +6.99, in situ plagioclase(~(87)Sr/~(86)Sr)i ratios of 0.7034–0.7042, and zircon ε_(Hf)(t) of +12.2 to +16.8. Our results integrated with published data suggest a model of Gangdese juvenile crustal growth by a subduction-related water-enriched mantle wedge. The hydrous partial melting of the lithosphere mantle was triggered by the dehydration of a Neo-Tethyan oceanic slab. This mafic magmatism emplaced in the middle-lower crust of intraoceanic arcs or active continental margins, leading to Jurassic juvenile crustal growth in southern Tibet.  相似文献   
102.
The origin of native Si-Fe alloy mineral is thought to be related with mantle and aerolite. The native Si-Fe alloy minerals from podiform chromites of the Luobusha ophiolite in the Yarlong Zangbo suture zone were examined by a new method for powder-like diffractograms of small single crystals, using an SMART APEX-CCD area-detector X-ray diffractometer. The powder diffraction pattern shows that the minerals are composed of FeSi, FeSi2, β-FeSi2 and native silicon. The association of these minerals suggests that the crystallization order of the mineral may be from early to late FeSi→FeSi2→native silicon, accompanied by gradually increasing deoxidization. Translated from Acta Petrologica et Mineralogica, 2005, 24(5): 453–456 [译自: 岩石矿物学杂志]  相似文献   
103.
无机生油假说及其在中国的应用前景   总被引:4,自引:1,他引:4       下载免费PDF全文
袁学诚  李善芳 《中国地质》2012,39(4):843-854
无机生油假说认为,原油和天然气和近地表的生物物质没有根本联系,它们是生成于地幔内的非生物来源的碳氢化合物。因而油气不是一个不可再生资源,而是一个可再生资源。无机生油假说得到地质学、物理学和化学等三个基本学科的支持。在地质观察上,发现全球许多大油田的油气储藏与原始生物物质之间数量上有巨大落差,难于解释它们是由生物生成的。此外,有许多地区在结晶基底或变质基底内,或直接位于其上的沉积岩中发现石油。从生物生油假说来说,也是无法理解的。在化学上,早在二战期间,德国已由人工合成石油(费托合成),并生产了占德国战争中用油的9%的石油。无可争辩地说明,无机可以生成石油。根据化学(物理学)热力学理论分析确认,甲烷是唯一一种在标准温压条件(温度为298.15 K;压力为101325 Pa)下稳定的碳氢化合物,从甲烷形成正常烷属烃只有在压力>3×106kPa、温度>700°C时(相当于地下深度约100 km)才有可能。在地壳内的温压条件下由生物变质形成石油的假说,与化学热力学的基本原则相抵触。从氧化的有机分子,如碳水化合物(C6H12O6)形成较高的碳氢化合物在任何条件下都是不可能的。根据我国长期对深部构造的研究,笔者认为在中国东部及西太平洋蘑菇云岩石圈地幔发育的地区是寻找巨型无机油气田的有利地区,建议在发育蘑菇云岩石圈地幔地区开展无机油气田的勘探,并在无机油气田远景地区布置超深参数钻,以评价含油气远景。另外建议加强物探工作,尤其是研究地震勘探处理基底内三维含油气构造的技术。  相似文献   
104.
The Hongshishan mafic–ultramafic intrusion (SIMS zircon U–Pb age 286.4 ± 2.8 Ma) consists of dunite, clinopyroxene peridotite, troctolite, and gabbro. Major elements display systematic correlations. Trace elements have identical distribution patterns, including flat rare-earth element (REE) patterns with positive Eu anomalies and enrichments in large ion lithophile elements (LILE) but depletions in Nb and Ta, indicating fractional crystallization as a key factor in magmatic evolution. Petrologic and geochemical variations in drill core samples demonstrate that minor assimilation and progressive magma injections were closely associated with Ni–Cu mineralization. Mass balance estimates and Sr–Nd isotopes reveal that the Hongshishan parental magmas were high-Mg and low-Ti tholeiitic basalts and were derived from a lithospheric mantle source that had been modified by subducted slab metasomatism before partial melting.

Southward subduction of the Palaeo-Tianshan–Junggar Ocean is further constrained by a compilation of inferred, subduction-induced modifications of mantle sources in mafic–ultramafic intrusions distributed in the eastern Tianshan–Beishan area. Integrating the regional positive ?Nd(t) granites, high-Mg and low-Ti basaltic magmas (mafic–ultramafic intrusions), and slightly later high-Ti basalts in NW China suggests that their petrogenesis could be attributed to Permian mantle plume activities.  相似文献   
105.
刘崇兵  张禹慎 《测绘学报》1999,28(2):103-109
本文探讨了利用地震面波和重力资料联合反演地壳-地幔三维密度结构的反演问题。首先建立了地震面波和重力资料的观测方程,然后应用广义线性反线理论给出了反演问题的解。模型试验结果表明,与单纯面波反演的结果相比,联合反演的解在分析率和方差两个方面都有改善,当加入扰动重力数据时,在0-300km深度范围内联合反演的结果明显好于单纯面波反演的结果。  相似文献   
106.
The present study examines the petrology and geochemistry of the Early Paleozoic Motai serpentinites, the South Kitakami Belt, northeast Japan, to reveal the subduction processes and tectonics in the convergent margin of the Early Paleozoic proto-East Asian continent. Protoliths of the serpentinites are estimated to be harzburgite to dunite based on the observed amounts of bastite (orthopyroxene pseudomorph). Relic chromian spinel Cr# [=Cr/(Cr + Al)] increases with decreasing amount of bastite. The compositional range of chromian spinel is similar to that found in the Mariana forearc serpentinites. This fact suggests that the protoliths of the serpentinites are depleted mantle peridotites developed beneath the forearc regions of a subduction zone. The Motai serpentinites are divided into two types, namely, Types 1 and 2 serpentinites; the former are characterized by fine-grained antigorite and lack of olivine, and the latter have coarse-grained antigorite and inclusion-rich olivine. Ca-amphibole occurs as isolated crystals or vein-like aggregates in the Type 1 serpentinites and as needle-shaped minerals in the Type 2 serpentinites. Ca-amphibole of the Type 1 serpentinites is more enriched in LILEs and LREEs, suggesting the influence of hydrous fluids derived from slabs. By contrast, the mineral assemblage, mineral chemistry, and field distribution of the Type 2 serpentinites reflect the thermal effect of contact metamorphism by Cretaceous granite. The Ca-amphibole of the Type 1 serpentinites is different from that of the Hayachine–Miyamori Ophiolite in terms of origin; the latter was formed by the infiltration of melts produced in an Early Paleozoic arc–backarc system. Chemical characteristics of the Ca-amphibole in the ultramafic rocks in the South Kitakami Belt reflect the tectonics of an Early Paleozoic mantle wedge, and the formation of the Motai metamorphic rocks in the forearc region of the Hayachine–Miyamori subduction zone system, which occurred at the Early Paleozoic proto-East Asian continental margin.  相似文献   
107.
Chemical heterogeneities in the Martian mantle are believed to result from the crystallization of a magma ocean in the first 100 million years of its history. Shergottite meteorites from Mars are thought to retain a compositional record of such early differentiation and the resulting mineralogy at different depths. The coupled 176Lu–176Hf and 147Sm–143Nd isotope systematics in 9 shergottites are used here to investigate these issues. Three compositional groups in the shergottites display distinct isotope systematics. One group, commonly termed as depleted, is characterized by positive 176Hfi from + 46.2 to + 50.4 and 143Ndi from + 36.2 to + 39.1. Another, termed as enriched, has negative 176Hfi = − 16.5 to − 13.2 and 143Ndi = − 7.0 to − 6.5. The third group is intermediate between the depleted and enriched groups with positive 176Hfi = + 30.0 to + 33.4 and 143Ndi = + 16.9. Together, they describe mixing curves between 176Hf/177Hf, 143Nd/144Nd, Lu/Hf, and Sm/Nd, implying that they sample two distinct sources in the Martian mantle. All shergottites are characterized by (Sm/Nd)source < (Sm/Nd)sample, but (Lu/Hf)source > (Lu/Hf)sample. This decoupling can be explained by two successive partial melting episodes in the depleted shergottite source and localized in the Martian upper mantle. The genesis of shergottites can be modeled using non-modal equilibrium partial melting in a source initially composed of 60% olivine, 21% clinopyroxene, 9% orthopyroxene, and 10% garnet, with degrees of partial melting of 8.8% and 3.9%, respectively, for the two successive events. The enriched end-member of the shergottite mixing curve is best modeled by late-stage quenched residual melt resulting from the crystallization of a magma ocean. The depleted shergottite source may be modeled as a mixture of cumulates and residual melt, as convection in the Martian magma ocean is expected to reduce the incompatible trace element heterogeneity in the final solidified layers. Consequently, equilibrium crystallization is preferred to model the crystallization of the Martian magma ocean. The models that best explain the shergottite data are those where the magma ocean is at a depth of at least 1350 km in Mars.  相似文献   
108.
The gold contents of 59 samples of mantle-derived xenoliths, along with 85 samples of sulfide assem-blages in them, of Cenozoic basalt from eight districts in eastern China are analyzed. The gold contents of mantle xenoliths usually fall in the range of 10-9―10-8, whereas those of the sulfide assemblages fall in the range of 10-4―10-2. This implies that the latter are several hundred thousand times higher than the former, and thus that Au in the mantle is concentrated mostly in sulfide assemblages. Gold con-tents of both mantle-derived xenoliths and sulfide assemblages in them are inhomogeneous spatially, but their distribution rules are similar. Except the samples from Hainan Province, either the mantle xenoliths with high gold content or sulfide assemblages of the mantle-derived xenoliths with high gold content are distributed mostly on the north and south margins of the North China platform (Hannuoba of Hebei Province and Linqu, Changle of Shandong Province), corresponding to districts with concen-trated gold deposits in northwest Hebei Province and Jiaodong Peninsula of Shandong Province. This may reflect the correlativity in age, nature and composition between the continental crust and the un-derlying lithospheric mantle. The underlying lithospheric mantle of the North China platform is an an-cient gold-rich lithospheric mantle. The gold-rich lithospheric mantle may be the material source of later activation, enrichment, transportation and mineralization of gold by auriferous CO2 mantle fluids.  相似文献   
109.
These last 10 years, numerical models of mantle convection have emphasized the role of the 670 km endothermic phase change in generating avalanches that trigger catastrophic mass transfers between upper and lower mantle. On the other hand, scientists have emphasized the concomitance of large-scale worldwide geophysical and tectonic events, which could find their deep thermal roots in the huge mass transfers induced by the avalanches. In particular, the paleontological records show two periods of length of day (l.o.d.) shortening between 420 and 360, and 200 and 80 Myr BP. This last event is synchronous with a strong true polar wander and a global warming of the upper mantle. In order to study the potential effects of the avalanche on the main component of the Earth’s rotation, the Liouville equation has been solved and the l.o.d. evolution has been calculated from the perturbations of the inertia tensor. The results show that the inertia tensor of the Earth’s is mainly sensitive to the global transfers through the 670 km discontinuity. The l.o.d. perturbations will be synchronous with the global thermal effects of the avalanche. These theoretical results allow proposing a self-consistent physical mechanism to explain periods of the Earth’s rotation acceleration. Within this context, the l.o.d. shortening during the Cenozoic and Cretaceous brings one more clue to the possible participation of a mantle avalanche in generating the concomitant large scale events which have occurred during this very particular period of the Earth’s history.  相似文献   
110.
According to a Sino-U. S. joint project, eleven broadband digital PASSCAL seismometers had been deployed inside the Tibetan Plateau, of which 7 stations were on the profile from Lhasa to Golmud and other 4 stations situated at Maxin, Yushu, Xigatze and Linzhi. Dispersions and phase velocities of the Rayleigh surface waves (10s–120s) were obtained on five paths distributed in the different blocks of Tibetan Plateau. Inversions of the S-wave velocity structures in Songpan-Ganzi block, Qiang-Tang block, Lhasa block and the faulted rift zone were obtained from the dispersion data. The results show that significant lateral variation of the S-wave velocity structures among the different blocks exists. The path from Wenquan to Xigatze (abbreviated as Wndo-Xiga) passes through the rift-zone of Yadong-Anduo. The phase velocities of Rayleigh waves from 10s to 100s on this path are significantly higher than that on other paths. The calculated mean crustal velocity on this path is 3.8 km/s, much greater than that on other paths, where mean crustal velocities of 3.4–3.5 km/s are usually observed. Low velocity zones with different thicknesses and velocities are observed in the middle-lower crust for different paths. Songpan-Ganzi block, located in the northern part of Tibetan Plateau is characterized by a thinner crust of 65 km thick and a prominent low velocity zone in the upper mantle. The low velocity zone with a velocity of 4.2 km/s is located at a depth form 115 km to 175 km. While in other blocks, no low velocity zone in the upper mantle is observed. The value of Sn in Songpan-Ganzi is calculated to be 4.5 km/s, while those in Qiang-Tang and Lhasa blocks are about 4.6 km/s. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, Supp., 566–573, 1992.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号