首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   405篇
  免费   63篇
  国内免费   105篇
地球物理   34篇
地质学   525篇
海洋学   9篇
综合类   5篇
  2024年   5篇
  2023年   14篇
  2022年   8篇
  2021年   6篇
  2020年   17篇
  2019年   18篇
  2018年   11篇
  2017年   17篇
  2016年   14篇
  2015年   16篇
  2014年   19篇
  2013年   20篇
  2012年   24篇
  2011年   13篇
  2010年   16篇
  2009年   16篇
  2008年   19篇
  2007年   21篇
  2006年   24篇
  2005年   24篇
  2004年   29篇
  2003年   26篇
  2002年   16篇
  2001年   19篇
  2000年   24篇
  1999年   14篇
  1998年   14篇
  1997年   15篇
  1996年   11篇
  1995年   7篇
  1994年   8篇
  1993年   6篇
  1992年   11篇
  1991年   6篇
  1990年   12篇
  1989年   9篇
  1988年   7篇
  1987年   6篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
排序方式: 共有573条查询结果,搜索用时 421 毫秒
21.
In the Gran Paradiso massif (western Alps), the boundary between the Erfaulet orthogneiss and the overlying metasediments (Money Complex) is interpreted as a Late Palaeozoic intrusive contact. Major arguments in favour of this hypothesis are: (i) the obliquity of the sedimentary layering with respect to the contact; (ii) the presence of aplitic dykes within the Money Complex; (iii) the lack of a mylonitic zone; and (iv) rare relics of an early generation of garnet in the Money metasediments, interpreted as evidence of the contact metamorphism of the Erfaulet granite. To cite this article: B. Le Bayon, M. Ballèvre, C. R. Geoscience 336 (2004).  相似文献   
22.
A series of striking migmatitic structures occur in rectilinear networks through western Fiordland, New Zealand, involving, for the most part, narrow anorthositic dykes that cut hornblende‐bearing orthogneiss. Adjacent to the dykes, host rocks show patchy, spatially restricted recrystallization and dehydration on a decimetre‐scale to garnet granulite. Although there is general agreement that the migration of silicate melt has formed at least parts of the structures, there is disagreement on the role of silicate melt in dehydrating the host rock. A variety of causal processes have been inferred, including metasomatism due to the ingress of a carbonic, mantle‐derived fluid; hornblende‐breakdown leading to water release and limited partial melting of host rocks; and dehydration induced by volatile scavenging by a migrating silicate melt. Variability in dyke assemblage, together with the correlation between dehydration structures and host rock silica content, are inconsistent with macroscopic metasomatism, and best match open system behaviour involving volatile scavenging by a migrating trondhjemitic liquid.  相似文献   
23.
The role of clinopyroxene in producing grandite garnet is evaluatedusing data from an ultrahigh-temperature metamorphosed calc-silicategranulite occurrence in the Eastern Ghats Belt, India. ‘Peak’pressure–temperature conditions of metamorphism were previouslyconstrained from associated high Mg–Al granulites as c.0·9 GPa, >950°C, and the rocks were near-isobaricallycooled to c. 750°C. Grandite garnet of variable compositionwas produced by a number of reactions involving phases suchas clinopyroxene, scapolite, plagioclase, wollastonite and calcite,in closely spaced domains. Compositional heterogeneity is preservedeven on a microscale. This precludes pervasive fluid fluxingduring either the peak or the retrograde stage of metamorphism,and is further corroborated by computation of fluid–rockratios. With the help of detailed textural and mineral compositionalstudies leading to formulation of balanced reactions, and usingan internally consistent thermodynamic dataset and relevantactivity–composition relationships, new petrogenetic gridsare developed involving clinopyroxene in the system CaO–Al2O3–FeO–SiO2–CO2–O2in TaCO2fO2 space to demonstrate the importanceof these factors in the formation of grandite garnet. Two singularcompositions in garnet-producing reactions in this system arededuced, which explain apparently anomalous textural relations.The possible role of an esseneite component in clinopyroxenein the production of grandite garnet is evaluated. It is concludedthat temperature and fO2 are the most crucial variables controllinggarnet composition in calc-silicate granulites. fO2, however,behaves as a dependent variable of CO2 in the fluid phase. Externalfluid fluxing of any composition is not necessary to producechemical heterogeneity of garnet solid solution. KEY WORDS: grandite garnet; role of clinopyroxene; internal buffering; oxidation–decarbonation equilibria  相似文献   
24.
The Kyffhäuser Crystalline Complex, Central Germany, formspart of the Mid-German Crystalline Rise, which is assumed torepresent the Variscan collision zone between the East Avalonianterrane and the Armorican terrane assemblage. High-precisionU–Pb zircon and monazite dating indicates that sedimentaryrocks of the Kyffhäuser Crystalline Complex are youngerthan c. 470 Ma and were intruded by gabbros and diorites between345 ± 4 and 340 ± 1 Ma. These intrusions had magmatictemperatures between 850 and 900°C, and caused a contactmetamorphic overprint of the sediments at PT conditionsof 690–750°C and 5–7 kbar, corresponding toan intrusion depth of 19–25 km. At 337 ± 1 Ma themagmatic–metamorphic suite was intruded by granites, syenitesand diorites at a shallow crustal level of some 7–11 km.This is inferred from a diorite, and conforms to PT pathsobtained from the metasediments, indicating a nearly isothermaldecompression from 5–7 to 2–4 kbar at 690–750°C.Subsequently, the metamorphic–magmatic sequence underwentaccelerated cooling to below 400°C, as constrained by garnetgeospeedometry and a previously published K–Ar muscoviteage of 333 ± 7 Ma. With respect to PTDtdata from surrounding units, rapid exhumation of the KCC canbe interpreted to result from NW-directed crustal shorteningduring the Viséan. KEY WORDS: contact metamorphism; U–Pb dating; hornblende; garnet; Mid-German Crystalline Rise; PT pseudosection  相似文献   
25.
Polymetamorphic garnet micaschists from the Austroalpine Saualpe Eclogite Unit (Kärnten, Austria, Eastern Alps) display complex microstructural and mineral–chemical relationships. Automated scanning electron microscopy routines with energy dispersive X‐ray (EDX) spectral mapping were applied for monazite detection and garnet mineral–chemical characterization. When the Fe, Mg, Mn and Ca element wt% compositions are used as generic labels for garnet EDX spectra, complex zonations and porphyroblast generations can be resolved in complete thin sections for selective electron‐microprobe analyses. Two garnet porphyroblast generations and diverse monazite age populations have been revealed in low‐Ca and high‐Al‐metapelites. Garnet 1 has decreasing Mn, constant Ca and significantly increasing Mg from cores to rims. Geothermobarometry of garnet 1 assemblages signals a crystallization along a M1 prograde metamorphism at ~650 °C/6–8 kbar. Sporadic monazite 1 crystallization started at c. 320 Ma. Subsequent pervasive 300–250 Ma high‐Y and high‐Gd monazite 1 formation during decompression coincided with the intrusion of Permian and Early Triassic pegmatites. Monazite 1 crystallized along the margin of garnet 1. Coronas of apatite and allanite around the large 320–250 Ma monazite signal a retrogressive stage. These microstructures suggest a Carboniferous‐to‐Early‐Permian age for the prograde M1 event with garnet 1. Such a M1 event at an intermediate‐P/T gradient has not yet been described from the Saualpe, and preceded a Permo‐Triassic low‐P stage. The M2 event with garnet 2 postdates the corona formation around Permian monazite. Garnet 2 displays first increasing XCa at decreasing XMg, then increasing XCa and XMg, and finally decreasing XCa with increasing XMg, always at high Ca and Mg, and low Mn. This records a P–T evolution which passed through eclogite facies conditions and reached maximum temperatures at ~750 °C/14 kbar during decompression‐heating. A monazite 2 population (94–86 Ma) with lower Y and Gd contents crystallized at decreasing pressure during the Cretaceous (Eo‐Alpine) metamorphism M2 at a high‐P/T gradient. The Saualpe Eclogite Unit underwent two distinct clockwise metamorphic cycles at different P–T conditions, related to continental collisions under different thermal regimes. This led to a characteristic distribution pattern of monazite ages in this unit which is different from other Austroalpine basement areas.  相似文献   
26.
27.
Metamorphic equilibration requires chemical communication between minerals and may be inhibited through sluggish volume diffusion and or slow rates of dissolution in a fluid phase. Relatively slow diffusion and the perceived robust nature of chemical growth zoning may preclude garnet porphyroblasts from readily participating in low‐temperature amphibolite facies metamorphic reactions. Garnet is widely assumed to be a reactant in staurolite‐isograd reactions, and the evidence for this has been assessed in the Late Proterozoic Dalradian pelitic schists of the Scottish Highlands. The 3D imaging of garnet porphyroblasts in staurolite‐bearing schists reveals a good crystal shape and little evidence of marginal dissolution; however, there is also lack of evidence for the involvement of either chlorite or chloritoid in the reaction. Staurolite forms directly adjacent to the garnet, and its nucleation is strongly associated with deformation of the muscovite‐rich fabrics around the porphyroblasts. “Cloudy” fluid inclusion‐rich garnet forms in both marginal and internal parts of the garnet porphyroblast and is linked both to the production of staurolite and to the introduction of abundant quartz inclusions within the garnet. Such cloudy garnet typically has a Mg‐rich, Mn‐poor composition and is interpreted to have formed during a coupled dissolution–reprecipitation process, triggered by a local influx of fluid. All garnet in the muscovite‐bearing schists present in this area is potentially reactive, irrespective of the garnet composition, but very few of the schists contain staurolite. The staurolite‐producing reaction appears to be substantially overstepped during the relatively high‐pressure Barrovian regional metamorphism reflecting the limited permeability of the schists in peak metamorphic conditions. Fluid influx and hence reaction progress appear to be strongly controlled by subtle differences in deformation history. The remaining garnet fails to achieve chemical equilibrium during the reaction creating distinctive patchy compositional zoning. Such zoning in metamorphic garnet created during coupled dissolution–reprecipitation reactions may be difficult to recognize in higher grade pelites due to subsequent diffusive re‐equilibration. Fundamental assumptions about metamorphic processes are questioned by the lack of chemical equilibrium during this reaction and the restricted permeability of the regional metamorphic pelitic schists. In addition, the partial loss of prograde chemical and textural information from the garnet porphyroblasts cautions against their routine use as a reliable monitor of metamorphic history. However, the partial re‐equilibration of the porphyroblasts during coupled dissolution–reprecipitation opens possibilities of mapping reaction progress in garnet as a means of assessing fluid access during peak metamorphic conditions.  相似文献   
28.
The partitioning of rare earth elements (REE) between zircon, garnet and silicate melt was determined using synthetic compositions designed to represent partial melts formed in the lower crust during anatexis. The experiments, performed using internally heated gas pressure vessels at 7 kbar and 900–1000 °C, represent equilibrium partitioning of the middle to heavy REE between zircon and garnet during high‐grade metamorphism in the mid to lower crust. The DREE (zircon/garnet) values show a clear partitioning signature close to unity from Gd to Lu. Because the light REE have low concentrations in both minerals, values are calculated from strain modelling of the middle to heavy REE experimental data; these results show that zircon is favoured over garnet by up to two orders of magnitude. The resulting general concave‐up shape to the partitioning pattern across the REE reflects the preferential incorporation of middle REE into garnet, with DGd (zircon/garnet) ranging from 0.7 to 1.1, DHo (zircon/garnet) from 0.4 to 0.7 and DLu (zircon/garnet) from 0.6 to 1.3. There is no significant temperature dependence in the zircon–garnet REE partitioning at 7 kbar and 900–1000 °C, suggesting that these values can be applied to the interpretation of zircon–garnet equilibrium and timing relationships in the ultrahigh‐T metamorphism of low‐Ca pelitic and aluminous granulites.  相似文献   
29.
Novel approaches to garnet analysis have been used to assess rates of intergranular diffusion between different matrix phases and garnet porphyroblasts in a regionally metamorphosed staurolite‐mica‐schist from the Barrovian‐type area in Scotland. X‐ray maps and chemical traverses of planar porphyroblast surfaces reveal chemical heterogeneity of the garnet grain boundary linked to the nature of the adjacent matrix phase. The garnet preserves evidence of low temperature retrograde exchange with matrix minerals and diffusion profiles documenting cation movement along the garnet boundaries. Garnet–quartz and garnet–plagioclase boundaries preserve evidence of sluggish Mg, Mn and Fe diffusion at comparable rates to volume diffusion in garnet, whereas diffusion along garnet–biotite interfaces is much more effective. Evidence of particularly slow Al transport, probably coupled to Fe3+ exchange, is locally preserved on garnet surfaces adjacent to Fe‐oxide phases. The Ca distribution on the garnet surface shows the most complex behaviour, with long‐wavelength heterogeneities apparently unrelated to the matrix grain boundaries. This implies that the Ca content of garnet is controlled by local availability and is thought likely to reflect disequilibrium established during garnet growth. Geochemical anomalies on the garnet surfaces are also linked to the location of triple junctions between the porphyroblasts and the matrix phases, and imply enhanced transport along these channels. The slow rates of intergranular diffusion and the characteristics of different boundary types may explain many features associated with the prograde growth of garnet porphyroblasts. Thus, minerals such as quartz, Fe‐oxides and plagioclase whose boundaries with garnet are characterized by slow intergranular diffusion rates appear to be preferentially trapped as inclusions within porphyroblasts. As such grain boundary diffusion rates may be a significant kinetic impediment to metamorphic equilibrium and garnet may struggle to maintain chemical and textural equilibrium during growth in pelites.  相似文献   
30.
A dramatic demonstration of the role of intergranular solubility in promoting chemical equilibration during metamorphism is found in the unusual zoning of garnet in pelitic schist exposed at Harpswell Neck, Maine, USA. Many garnet crystals have irregular, patchy distributions of Mn, Cr, Fe and Mg in their inclusion‐rich interiors, transitioning to smooth, concentric zoning in their inclusion‐poor outer rims; in contrast, zoning of Ca and Y is comparatively smooth and concentric throughout. We re‐assess the disputed origin of these zoning features by examining garnet growth in the context of the thermal and structural history of the rocks, and by evaluating the record of fluid–rock interaction revealed in outcrop‐scale veining and fluid‐inclusion assemblages. The transition in the character of garnet zoning correlates with the onset of a synkinematic, simple‐shear‐dominated phase of garnet growth and with a shift in the composition of the intergranular fluid from CO2‐rich to H2O‐rich. Compositional variations in garnet are therefore best explained by a two‐stage growth history in which intergranular diffusive fluxes reflect differences in the concentration of dissolved species in these two contrasting fluids. Interiors of garnet crystals grew in the presence of a CO2‐rich fluid, in which limited solubility for Mn and Cr (and perhaps Fe and Mg) produced patchy disequilibrium overprint zoning, while appreciable solubility for Ca and Y permitted their rock‐wide equilibration. Rims grew in the presence of an H2O‐rich fluid, in which high intergranular concentrations for all elements except Cr enabled diffusion over length scales sufficient for rock‐wide equilibration. This striking example of partial chemical equilibrium during reaction and porphyroblast growth implies that thermal effects may commonly be subsidiary in importance to solubilities in the intergranular medium as determinants of length scales for metamorphic equilibration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号