首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   405篇
  免费   63篇
  国内免费   105篇
地球物理   34篇
地质学   525篇
海洋学   9篇
综合类   5篇
  2024年   5篇
  2023年   14篇
  2022年   8篇
  2021年   6篇
  2020年   17篇
  2019年   18篇
  2018年   11篇
  2017年   17篇
  2016年   14篇
  2015年   16篇
  2014年   19篇
  2013年   20篇
  2012年   24篇
  2011年   13篇
  2010年   16篇
  2009年   16篇
  2008年   19篇
  2007年   21篇
  2006年   24篇
  2005年   24篇
  2004年   29篇
  2003年   26篇
  2002年   16篇
  2001年   19篇
  2000年   24篇
  1999年   14篇
  1998年   14篇
  1997年   15篇
  1996年   11篇
  1995年   7篇
  1994年   8篇
  1993年   6篇
  1992年   11篇
  1991年   6篇
  1990年   12篇
  1989年   9篇
  1988年   7篇
  1987年   6篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
排序方式: 共有573条查询结果,搜索用时 125 毫秒
131.
利用LA-ICP-MS方法对柴达木盆地北缘鱼卡河超高压变质的多硅白云母榴辉岩及共生的石榴角闪钠长岩中的金红石进行了详细的矿物学和LA-ICP-MS原位微量元素研究。结果表明:多硅白云母榴辉岩中金红石显示Si成分环带,且Si含量(质量分数,下同)随变质压力而发生规律性的变化;从进变质到峰期变质阶段,金红石中Si含量从核部向边部呈升高趋势,峰期金红石的边部Si含量达到最高,退变质阶段金红石中Si含量从核部向边部呈降低趋势;石榴角闪钠长岩中的金红石主要呈包体产于多硅白云母、石榴子石、角闪石和钠长石中;在相同的超高压变质条件下,石榴角闪钠长岩中多硅白云母包体金红石的Si含量((1018~2741)×10^-6,平均为1924×10^-6)明显高于多硅白云母榴辉岩中的峰期金红石((450~2397)×10^-6,平均为952×10^-6)。综合多硅白云母榴辉岩和石榴角闪钠长岩的产状、变质演化和全岩成分以及前人对大别—苏鲁超高压榴辉岩中富硅金红石的研究结果提出,超高压变质岩石中金红石的Si含量与变质压力成正相关关系,金红石中Si含量大于500×10^-6可以作为榴辉岩经历超高压变质作用的指示标志。超高压金红石中Si含量与全岩成分中SiO2和TiO2含量有关,随SiO2含量的升高和TiO2含量的降低而升高。  相似文献   
132.
Garnet is a versatile and useful indicator mineral exploited in numerous geological studies. Despite its utility in providing thermobarometry and geochronology constraints, many difficulties remain in making meaningful interpretations of such data. In this paper, we characterize garnet grains from over 140 garnet‐bearing metasedimentary rock samples collected from the northern part of the Moine Supergroup (Scottish Caledonides). Large, euhedral garnet grains are interpreted to be indicative of prograde metamorphic growth during the most recent (Scandian, c. 430 Ma) phase of orogenesis. Anhedral garnet is largely restricted to the relatively low‐grade (greenschist – lower amphibolite facies) Moine thrust sheet, with an abrupt change in morphology and grain size when traced across the overlying Ben Hope and Sgurr Beag thrusts into the higher grade, more hinterland‐positioned thrust sheets. Our results suggest that caution should be exercised in using anhedral garnet in the Moine thrust sheet to estimate peak P–T conditions associated with low temperature (< ~500 °C) Scandian metamorphism, because in at least some cases garnet growth may have occurred during an earlier metamorphic event. However, chemical and isotopic data from this structurally lower anhedral garnet may still be useful for deconvolving a possible polymetamorphic history for this thrust sheet. In the immediately overlying Ben Hope thrust sheet, garnet has prograde euhedral (Scandian?) rims, indicating that the Ben Hope thrust must represent a significant thermal and/or chemical break. Inclusion distribution and mineral assemblages in garnet have been used to gain further insight on garnet growth conditions and to distinguish garnet that likely contains multiple generations of growth. Although our results are specific to the Caledonides of northern Scotland, this work highlights the general necessity of a comprehensive petrographic assessment in advance of interpreting large suites of garnet‐derived thermodynamic and geochronological data.  相似文献   
133.
The recent identification of multiple strike‐parallel discontinuities within the exhumed Himalayan metamorphic core has helped revise the understanding of convergence accommodation processes within the former mid‐crust exposed in the Himalaya. Whilst the significance of these discontinuities to the overall development of the mountain belt is still being investigated, their identification and characterization has become important for potential correlations across regions, and for constraining the kinematic framework of the mid‐crust. The result of new phase equilibria modelling, trace element analysis and high‐precision Lu–Hf garnet dating of the metapelites from the Likhu Khola region in east central Nepal, combined with the previously published monazite petrochronology data confirms the presence of one of such cryptic thrust‐sense tectonometamorphic discontinuities within the lower portion of the exhumed metamorphic core and provides new constraints on the P–T estimates for that region. The location of the discontinuity is marked by an abrupt change in the nature of P–T–t paths of the rocks across it. The rocks in the footwall are characterized by a prograde burial P–T path with peak metamorphic conditions of ~660°C and ~9.5 kbar likely in the mid‐to‐late Miocene, which are overlain by the hanging wall rocks, that preserve retrograde P–T paths with P–T conditions of >700°C and ~7 kbar in the early Miocene. The occurrence of this thrust‐sense structure that separates rock units with unique metamorphic histories is compatible with orogenic models that identify a spatial and temporal transition from early midcrustal deformation and metamorphism in the deeper hinterland to later deformation and metamorphism towards the shallower foreland of the orogen. Moreover, these observations are comparable with those made across other discontinuities at similar structural levels along the Himalaya, confirming their importance as important orogen‐scale structures.  相似文献   
134.
Mica schists of the Variscan Austroalpine Ötztal basement (Eastern Alps) contain synkinematically grown garnet porphyroblasts showing three zones with complex inclusion trails. Staurolite, kyanite and sillimanite grew over the main schistosity that envelops the garnet porphyroblasts. The mineral‐forming reaction sequences modelled in the MnKFMASH and KFMASH systems show that garnet of zone 1 grew at approximately 1300 MPa, whereas zone 2 and zone 3 grew during substantial decompression and partial thermal relaxation. For the growth of staurolite, kyanite and sillimanite, this modelling shows that thermal relaxation continued after decompression under only slightly changing pressure conditions, until the peak temperature conditions of Variscan metamorphism were reached. The result of this modelling is a pressure‐temperature‐time (P–T–t) heating path that is consistent with a tectonic interpretation implying thickening of the lithosphere during continental collision and subsequent mantle ‐ crustal lithosphere decoupling plus extension. A direct implication of this model is that the heat budget of Variscan metamorphism was controlled by the convective replacement of the thickened lithospheric root with asthenospheric material.  相似文献   
135.
Regularly oriented orthopyroxene (opx) and forsterite (fo) inclusions occur as opx + rutile (rt) or fo + rt inclusion domains in garnet (grt) from Otrøy peridotite. Electron diffraction characterization shows that forsterite inclusions do not have any specific crystallographic orientation relationships (COR) with the garnet host. In contrast, orthopyroxene inclusions have two sets of COR, that is, COR‐I: <111>grt//<001>opx and {110}grt~//~{100}opx (~13° off) and COR‐II: <111>grt//<011>opx and {110}grt~//~{100}opx (~14° off), in four garnet grains analysed. Both variants of orthopyroxene have a blade‐like habit with one pair of broad crystal faces parallel/sub‐parallel to {110}grt plane and the long axis of the crystal, <001>opx for COR‐I and <011>opx for COR‐II, along <111>grt direction. Whereas the lack of specific COR between forsterite and garnet, along with the presence of abundant infiltrating trails/veinlets decorated by fo + rt at garnet edges, provide compelling evidence for the formation of forsterite inclusions in garnet through the sequential cleaving–infiltrating–precipitating–healing process at low temperatures, the origin of the epitaxial orthopyroxene inclusions in garnet is not so obvious. In this connection, the reported COR, the crystal habit and the crystal growth energetics of the exsolved orthopyroxene in relict majoritic garnet were reviewed/clarified. The exsolved orthopyroxene in a relict majoritic garnet follows COR‐III: {112}grt//{100}opx and <111>grt//<001>opx. Based on the detailed trace analysis on published SEM images, these exsolved orthopyroxene inclusions are shown to have the crystal habit with one pair of broad crystal faces parallel to {112}grt//{100}opx and the long crystal axis along <111>grt//<001>opx. Such a crystal habit can be rationalized by the differences in oxygen sub‐lattices of both structures and represents the energetically favoured crystal shape of orthopyroxene inclusions in garnet formed by solid‐state exsolution mechanism. Considering the very different COR, crystal habit, as well as crystal growth direction, the orthopyroxene inclusions in garnet of the present sample most likely had been formed by mechanism(s) other than solid‐state exsolution, regardless of their regularly oriented appearance in garnet and the COR specification between orthopyroxene and garnet. In fact, the crystallographic characteristics of orthopyroxene and the similar chemical compositions of garnet at opx + rt inclusion domains, fo + rt inclusion domains/trails and garnet rim suggest that the orthopyroxene inclusions in the garnet are most likely formed by similar cleaving‐infiltration process as forsterite inclusions, though probably at an earlier stage of metamorphism. This work demonstrates that the oriented inclusions in host minerals, with or without specific COR, can arise from mechanism(s) other than solid‐state exsolution. Caution is thus needed in the interpretation of such COR, so that an erroneous identification of exhumation from UHP depths would not be made.  相似文献   
136.
Stromatic metatexites occurring structurally below the contact with the Ronda peridotite (Ojén nappe, Betic Cordillera, S Spain) are characterized by the mineral assemblage Qtz+Pl+Kfs+Bt+Sil+Grt+Ap+Gr+Ilm. Garnet occurs in low modal amount (2–5 vol.%). Very rare muscovite is present as armoured inclusions, indicating prograde exhaustion. Microstructural evidence of melting in the migmatites includes pseudomorphs after melt films and nanogranite and glassy inclusions hosted in garnet cores. The latter microstructure demonstrates that garnet crystallized in the presence of melt. Re‐melted nanogranites and preserved glassy inclusions show leucogranitic compositions. Phase equilibria modelling of the stromatic migmatite in the MnO–Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2–O2–C (MnNCaKFMASHOC) system with graphite‐saturated fluid shows P–T conditions of equilibration of 4.5–5 kbar, 660–700 °C. These results are consistent with the complete experimental re‐melting of nanogranites at 700 °C and indicate that nanogranites represent the anatectic melt generated immediately after entering supersolidus conditions. The P–T estimate for garnet and melt development does not, however, overlap with the low‐temperature tip of the pure melt field in the phase diagram calculated for the composition of preserved glassy inclusions in garnet in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH) system. A comparison of measured melt compositions formed immediately beyond the solidus with results of phase equilibria modelling points to the systematic underestimation of FeO, MgO and CaO in the calculated melt. These discrepancies are present also when calculated melts are compared with low‐T natural and experimental melts from the literature. Under such conditions, the available melt model does not perform well. Given the presence of melt inclusions in garnet cores and the P–T estimates for their formation, we argue that small amounts (<5 vol.%) of peritectic garnet may grow at low temperatures (≤700 °C), as a result of continuous melting reactions consuming biotite.  相似文献   
137.
Garnet grains from an intensely metasomatized mid‐crustal shear zone in the Reynolds Range, central Australia, exhibit a diverse assortment of textural and compositional characteristics that provide important insights into the geochemical effects of fluid–rock interaction. Electron microprobe X‐ray maps and major element profiles, in situ secondary ion mass spectrometry oxygen isotope analyses, and U–Pb and Sm–Nd geochronology are used to reconstruct their thermal, temporal and fluid evolution. These techniques reveal a detailed sequence of garnet growth, re‐equilibration and dissolution during intracontinental reworking associated with the Ordovician–Carboniferous (450–300 Ma) Alice Springs Orogeny. A euhedral garnet porphyroblast displays bell‐shaped major element profiles diagnostic of prograde growth zoning during shear zone burial. Coexisting granulitic garnet porphyroclasts inherited from precursor wall rocks show extensive cation re‐equilibration assisted by fracturing and fragmentation. Oxygen isotope variations in the former are inversely correlated with the molar proportion of grossular, suggesting that isotopic fractionation is linked to Ca substitution. The latter generally show close correspondence to the isotopic composition of their precursor, indicating slow intergranular diffusion of O relative to Fe2+, Mg and Mn. Peak metamorphism associated with shearing (~550 °C; 5.0–6.5 kbar) occurred at c. 360 Ma, followed by rapid exhumation and cooling. Progressive Mn enrichment in rim domains indicates that the retrograde evolution caused partial garnet dissolution. Accompanying intra‐mineral porosity production then stimulated limited oxygen isotope exchange between relict granulitic garnet grains and adjacent metasomatic biotite, resulting in increased garnet δ18O values over length scales <200 μm. Spatially restricted oxygen interdiffusion was thus facilitated by increased fluid access to reaction interfaces. The concentration of Ca in channelled fracture networks suggests that its mobility was enhanced by a similar mechanism. In contrast, the intergranular diffusion of Fe2+, Mg and Mn was rock‐wide under the same P–T regime, as demonstrated by a lack of local spatial variations in the re‐equilibration of these components. The extraction of detailed reaction histories from garnet must therefore take into account the variable length‐ and time‐scales of elemental and isotopic exchange, particularly where the involvement of a fluid phase enhances the possibility of measureable resetting profiles being generated for slowly diffusing components such as Ca and O, even at low ambient temperatures and relatively fast cooling rates.  相似文献   
138.
A model that relates the characteristic diffusion length and average cooling rate to peak temperature was developed for chemical diffusion in spherical geometries on the basis of geospeedometry principles and diffusion theory. The model is quantitatively evaluated for cation diffusion profiles in garnet. Important model parameters were calibrated empirically using diffusion zoning of Ca in garnet from the Pikwitonei Granulite Domain, a terrane for which the thermal history has been well characterized. The results are used: (i) to empirically test diffusion parameters for Mg and Fe(II) and (ii) to develop a tool that uses the diffusion zoning of these cations in garnet to constrain peak temperature conditions for garnet‐bearing rocks. The thermometric approach was externally tested by applying it to garnet crystals from various metamorphic terranes worldwide and comparing the results to published peak temperature estimates. The results overlap within uncertainties in all cases, but result that are based on Fe(II) and Mg chemical‐diffusion profiles are up to three times more precise than those acquired by conventional methods. The remarkable consistency of the results implies that the model is robust and provides a reliable means of estimating peak temperatures for different types of high‐grade metamorphic rock. The tool could be of particular advantage in rocks where critical assemblages for conventional thermometry do not occur or have been replaced during retrogression.  相似文献   
139.
Alpine‐type orogenic garnet‐bearing peridotites, associated with quartzo‐feldspathic gneisses of a 140–115 Ma high‐pressure/ultra‐high‐pressure metamorphic (HP‐UHPM) terrane, occur in two regions of the Indonesian island of Sulawesi. Both exposures are located within NW–SE‐trending strike–slip fault zones. Garnet lherzolite occurs as <10 m wide fault slices juxtaposed against Miocene granite in the left‐lateral Palu‐Koro (P‐K) fault valley, and as 10–30 m wide, fault‐bounded outcrops juxtaposed against gabbros and peridotites of the East Sulawesi ophiolite within the right‐lateral Ampana fault in the Bongka river (BR) valley. Six evolutionary stages of recrystallization can be recognized in the peridotites from both localities. Stage I, the precursor spinel lherzolite assemblage, is characterized by Ol+Cpx+Opx±Prg‐Amp ± Spl±Rt±Phl, as inclusions within garnet cores. Stage II, the main garnet lherzolite assemblage, consists of coarse‐grained Ol+Opx+Cpx+Grt; whereas finer‐grained, neoblastic Ol+Opx+Grt+Cpx±Spl±Prg‐Amp±Phl constitutes stage III. Stages IV and V are manifest as kelyphites of fibrous Opx+Cpx+Spl in inner coronas, and Opx+Spl+Prg‐Amp±Ep in outer coronas around garnet, respectively. The final (greenschist facies) retrogressive stage VI is accompanied by recrystallization of Serp+Chl±Mag±Tr±Ni sulphides±Tlc±Cal. P–T conditions of the hydrated precursor spinel lherzolite stage I were probably about 750 °C at 15–20 kbar. P–T determinations of the peak stage IIc (from core compositions) display considerable variation for samples derived from different outcrops, with clustering at 26–38 kbar, 1025–1210 °C (P‐K & BR); 19–21 kbar, 1070–1090 °C (P‐K), and 40–48 kbar, 1205–1290 °C (BR). Stage IIr (derived from rim compositions) generally records decompression of around 4–12 kbar accompanied by cooling of 50–240 °C from the IIc peak stage. Stage III, which post‐dates a phase of ductile deformation, yielded 22±2 kbar at 750±25 °C (P‐K) and 16±2 kbar at 730±40 °C (BR). The granulite–amphibolite–greenschist decompression sequence reflects uplift to upper crustal levels from conditions of 647–862 °C at P=15 kbar (stage IV), through 580–635 °C at P=10–12 kbar (stage V) to 350–400 °C at P=4–7 kbar (stage VI), respectively, and is identical to the sequence recorded in associated granulite, gneiss and eclogite. Sulawesi garnet peridotites are interpreted to represent minor components of the extensive HP‐UHP (peak P >28 kbar, peak T of c. 760 °C) metamorphic basement terrane, which was recrystallized and uplifted in a N‐dipping continental collision zone at the southern Sundaland margin in the mid‐Cretaceous. The low‐T , low‐P and metasomatized spinel lherzolite precursor to the garnet lherzolite probably represents mantle wedge rocks that were dragged down parallel to the slab–wedge interface in a subduction/collision zone by induced corner flow. Ductile tectonic incorporation into the underthrust continental crust from various depths along the interface probably occurred during the exhumation stage, and the garnet peridotites were subsequently uplifted within the HP‐UHPM nappe, suffering a similar decompression history to that experienced by the regional schists and gneisses. Final exhumation from upper crustal levels was clearly facilitated by entrainment in Neogene granitic plutons, and/or Oligocene trans‐tension in deep‐seated strike–slip fault zones.  相似文献   
140.
Metapelites from the inverted Barrovian sequence in the Sikkim Himalaya (northeast India) are shown to be largely continuous with respect to their bulk rock compositions, microstructures and pressure–temperature–time–deformation (PTtD) histories. However, the upper garnet–lower staurolite zone demarcates a region of microstructurally anomalous post-kinematic garnet populations contained within strongly segregated matrices. The different microstructures within samples from this region cannot be attributed to differences in their thermobarometric histories or bulk compositions, but are instead interpreted to represent an otherwise unexposed level of the Daling Group that is now exposed along a post-metamorphic thrust splay. These heterogeneous samples contain several discrete garnet populations that progressively crystallized with increasing PT. Garnet populations that experienced the most protracted growth now form complex polycrystals that exhibit crystallographically controlled and morphologically irregular interfaces adjacent to micaceous and quartzofeldspathic domains respectively. Electron backscatter diffraction indicates that these polycrystalline garnet structures contain numerous coalesced porphyroblasts that are structurally uncorrelated across their grain boundaries. However, a crystallographically preferred orientation at the polycrystal scale is interpreted to derive from epitaxial crystallization of early-formed garnet porphyroblasts on precursor mica. Later-nucleated porphyroblasts within polycrystals preferentially concentrated towards quartzofeldspathic domains, with the overall nucleation distribution likely controlled by a complex interplay between chemical heterogeneities, strain partitioning and epitaxial crystallization. The subsequent growth of these polycrystals was equally spatially heterogeneous; it was moderated by differences in the efficiency of grain boundary transfer between quartzofeldspathic and micaceous domains that precluded thin section-scale chemical equilibration. In contrast to samples from Sikkim containing more typical porphyroblastic populations in continuous and disseminated matrices, heterogeneous availability of garnet-forming components within this strongly layered matrix is shown to have resulted in grain-scale variations in growth rates and the spatial juxtapositioning of interface-controlled microstructures and locally equilibrated chemical compositions with those that were transport controlled.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号