首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   269篇
  免费   46篇
  国内免费   37篇
测绘学   13篇
大气科学   3篇
地球物理   86篇
地质学   165篇
海洋学   44篇
天文学   3篇
综合类   17篇
自然地理   21篇
  2024年   4篇
  2023年   9篇
  2022年   3篇
  2021年   4篇
  2020年   13篇
  2019年   11篇
  2018年   12篇
  2017年   14篇
  2016年   10篇
  2015年   13篇
  2014年   13篇
  2013年   23篇
  2012年   11篇
  2011年   19篇
  2010年   15篇
  2009年   8篇
  2008年   13篇
  2007年   15篇
  2006年   16篇
  2005年   15篇
  2004年   16篇
  2003年   13篇
  2002年   17篇
  2001年   8篇
  2000年   7篇
  1999年   9篇
  1998年   4篇
  1997年   5篇
  1996年   5篇
  1995年   6篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有352条查询结果,搜索用时 0 毫秒
101.
An extensive, reprocessed two‐dimensional (2D) seismic data set was utilized together with available well data to study the Tiddlybanken Basin in the southeastern Norwegian Barents Sea, which is revealed to be an excellent example of base salt rift structures, evaporite accumulations and evolution of salt structures. Late Devonian–early Carboniferous NE‐SW regional extensional stress affected the study area and gave rise to three half‐grabens that are separated by a NW‐SE to NNW‐SSE trending horst and an affiliated interference transfer zone. The arcuate nature of the horst is believed to be the effect of pre‐existing Timanian basement grain, whereas the interference zone formed due to the combined effect of a Timanian (basement) lineament and the geometrical arrangement of the opposing master faults. The interference transfer zone acted as a physical barrier, controlling the facies distribution and sedimentary thickness of three‐layered evaporitic sequences (LES). During the late Triassic, the northwestern part of a salt wall was developed due to passive diapirism and its evolution was influenced by halite lithology between the three‐LES. The central and southeastern parts of the salt wall did not progress beyond the pedestal stage due to lack of halite in the deepest evaporitic sequence. During the Triassic–Jurassic transition, far‐field stresses from the Novaya Zemlya fold‐and‐thrust belt reactivated the pre‐salt Carboniferous rift structures. The reactivation led to the development of the Signalhorn Dome, rejuvenated the northwestern part of the salt wall and affected the sedimentation rates in the southeastern broad basin. The salt wall together with the Signalhorn Dome and the Carboniferous pre‐salt structures were again reactivated during post‐Early Cretaceous, in response to regional compressional stresses. During this main tectonic inversion phase, the northwestern and southeastern parts of the salt wall were rejuvenated; however, salt reactivation was minimized towards the interference transfer zone beneath the centre of the salt wall.  相似文献   
102.
Aftershocks have been shown to exacerbate earthquake‐induced financial losses by causing further damage to structural and nonstructural components in buildings that have already been affected by a mainshock event and increasing the duration of disrupted functionality. Whereas seismic loss assessment under isolated events has been addressed thoroughly in previous studies, comparatively less has been accomplished in the area of loss assessment under sequences of mainshock‐aftershock ground motions. The main objective of the current study is to formulate a comprehensive framework for quantifying financial losses under sequential seismic events. The proposed framework is capable of accounting for the uncertainties in the state of structure due to accumulation of earthquake‐induced damage, the time‐dependent nature of seismic hazard in the post‐mainshock environment, and the uncertainties in the occurrence of mainshock and aftershock events. Application of the proposed framework to a 4‐story reinforced concrete moment frame shows that consideration of aftershocks could increase lifecycle earthquake‐induced losses by up to 30% compared with mainshock‐only assessments.  相似文献   
103.
Based on the digital waveform data recorded by Xinjiang Digital Seismic Network for the Xinyuan-Hejing M_L6.8 earthquake sequences of June 30,2012,this paper analyzes the stress drops of earthquake sequences and the correlation coefficients of focal mechanisms significant for strong aftershocks.Firstly,the source parameters of the Xinyuan-Hejing M_L6.8 earthquake sequences are obtained by applying the spectrum analysis and the Brunes source model.Then,the correlation coefficients of spectral amplitudes are calculated using the low-frequency spectral amplitude recorded by the same station for the different events.Finally,based on the results of the correlation coefficients of spectral amplitudes,the events with similar focal mechanisms are grouped using the clustering method.The results show that:(1)The stress drop values show a steady trend in the aftershock sequence calm period and the stress drop values show a rise-fall in strong aftershocks.(2)The moving average correlation coefficient of amplitude spectrum begins to spread after the main shock.It shows that the correlation decreases between the main shock and the aftershocks in mechanisms.(3)The results of focal mechanism groups show that the earthquake sequences are mainly strike slips.The stress distribution of the main pressure axis is nearly NS,which is the same as the structural stress field.(4)The magnitude and mechanism show that there is an agreement before the strong aftershock,which shows that the regional stress field is enhanced.  相似文献   
104.
In recent years, the additional risk posed to the built environment due to aftershock sequences and triggered events has been brought to attention, and several efforts have been directed towards developing fragility functions for structures in damaged conditions. Despite this rise of interest, a rather fundamental component for such tasks, namely that of aftershock ground motion record selection, has remained under-scrutinized. Herein, we propose a pragmatic procedure that can be applied for the selection of mainshock-aftershock ground motion pairs using consistent causal parameters and accounting for the correlation between their spectral accelerations. In addition, a structural analysis strategy that can be employed for the analytical derivation of damage-dependent fragility functions is outlined and presented through a case study. A more conventional back-to-back IDA analysis is also carried out in order to compare the derived damage-dependent fragility functions with the ones obtained with the proposed procedure. The results indicate that record selection remains a crucial factor even when assessing the structural vulnerability of damaged buildings, and should thus be treated cautiously.  相似文献   
105.
During a mainshock-aftershock (MSAS) sequence, there is no time to retrofit structures that are damaged by a mainshock; therefore, aftershocks could cause additional damage. This study proposes a new approach to develop state-dependent fragility curves using real MSAS records. Specifically, structural responses before and after each event of MSAS sequences are used to obtain statistical relationships among the engineering demand parameter prior to the seismic event (pre-EDP), the intensity measure of the seismic event (IM), and the engineering demand parameter after the seismic event (post-EDP). The developed fragility curves account for damage accumulation, providing the exceeding probability of damage state (DS) given the IM of the event and the DS of the structure prior to the seismic excitation. The UBC-SAWS model, which was developed for wood-frame houses in British Columbia, Canada, is considered as a case study application. Results indicate that for the examined structural typology, state-dependent fragility curves based on residual interstorey drift ratio (pre-EDP), peak ground velocity (IM), and maximum inter-storey drift ratio (post-EDP) are the best choice to characterise the cumulative damage effect. An illustration of the developed fragility curves is provided by considering a hypothetical MSAS scenario of a Mw 9.0 Cascadia mainshock triggering a Mw 6.0 crustal event in the Leech River fault, affecting wooden houses in Victoria, Canada. The MSAS scenario increases Yellow tags (restricted access) by 12.3% and Red tags (no access) by 4.8%.  相似文献   
106.
The lower Nanaimo Group was deposited in the (forearc) Georgia Basin, Canada and records the basin's initiation and early depositional evolution. Nanaimo Group strata are subdivided into 11 lithostratigraphic units, which are identified based on lithology, paleontology, texture and position relative to both the basal nonconformity and to each other. Significant topography on the basal nonconformity, however, has resulted in assignment of lithostratigraphic units that are not time correlative, and hence, cannot reliably be used to accurately reconstruct basin evolution. Herein, we present a sequence stratigraphic framework for lower Nanaimo Group strata in the Comox Sub-Basin (northern Georgia Basin) that integrates both facies analysis and maximum depositional ages (MDAs) derived from detrital zircon. This stratigraphic framework is used to define significant sub-basin-wide surfaces that bound depositional units and record the evolution of the basin during its early stages of development. Seven distinct depositional phases are identified in the lower 700 m of the lower Nanaimo Group. Depositional phases are separated by marine flooding surfaces, regressive surfaces, or disconformities. The overall stratigraphy reflects net transgression manifested as an upwards transition from braided fluvial conglomerates to marine mudstones. Transgression was interrupted by periods of shoreline progradation, and both facies analysis and MDAs reveal a disconformity in the lowermost part of the Nanaimo Group in the Comox Sub-Basin. Stratigraphic reconstruction of the Comox Sub-Basin reveals two dominant depocenters (along depositional strike) for coarse clastics (sandstones and conglomerates) during early development of the Georgia Basin. The development and position of these depocenters is attributed to subduction/tectonism driving both subsidence in the north-northwest and uplift in the central Comox Sub-Basin. Our work confirms that in its earliest stages of development, the Georgia Basin evolved from an underfilled, ridged forearc basin that experienced slow and stepwise drowning to a shoal-water ridged forearc basin that experienced rapid subsidence. We also propose that the Georgia Basin is a reasonable analogue for ridged forearc basins globally, as many ridged forearcs record similar depositional histories during their early evolution.  相似文献   
107.
日本绒螫蟹放流群体12S rRNA序列研究   总被引:3,自引:2,他引:3  
参考果蝇与蚤状溞序列进行了日本绒螯蟹放流群体的线粒体DNA 12S rRNA基因片段的引物设计、PCR扩增及序列测定,得到457bp的碱基序列,其A、T、G、C含量分别为158bp(34.57%)、178bp(38.95%)、51bp(11.16%),70bp(15.32%),与果蝇与蚤状相同基因片段序列含量相似.  相似文献   
108.
The temporal and spatial distribution of the aftershock sequences of the Ruwenzori (February 5, 1994, Mb (5.8)), Masisi (April 29, 1995, Mb (5.1)) and Kalehe (October 24, 2002, Mb (5.9)) earthquakes have been studied. It has been found that most of the aftershocks of the Ruwenzori earthquake are located on the eastern flank of the main escarpment and those of the Masisi earthquake are confined to the northwest of Lake Kivu margin where earthquake occurrence of swarm-type was normally observed. The Kalehe earthquake occurred in the central part of Lake Kivu and it was the largest earthquake observed in the Lake Kivu basin since 1900. The rate of decrease in aftershock activity with the time has shown that the p-value for Ruwenzori and Masisi earthquake equals 0.6, somehow smaller than that found in other geotectonic zones where p is close to 1. The p-value of the Kalehe earthquake is a normal value equal to 1.From an area delimited by spatial distribution of aftershocks, the linear dimension of the fault was estimated. The fault area determined in this study correlates well with those of previous studies which occurred in the Western Rift Valley of Africa including the Tanganyika and Upemba Rift.  相似文献   
109.
The Central Apennines, Italy, are characterized by moderate seismic activity on normal faults, oriented in directions parallel to the Apenninic chain. The subject of this study is the Umbria-Marche Apennines, a segment approximately 200-km long, where three main seismic events occurred in the last three decades. The 1979 Norcia earthquake was a Mw = 5.8 event, taking place at the south end of the considered segment. The 1984 Gubbio earthquake was a Mw = 5.6 event which took place at the north end. The 1997-1998 Colfiorito sequence constituted 8 main shocks with magnitudes Mw between 5 and 6 and epicenters located between the Gubbio and the Norcia earthquake areas. A model made of an elastic half-space is considered, in which the seismic sources are represented by rectangular dislocations which have the appropriate values of source parameters, and in which the static stress field produced by each event is calculated. The analysis of the Coulomb stress change (ΔC) as a function of time shows that the coseismic stress transfer and fault interaction played an important role in the region during the past three decades: 7 earthquakes of the 9 considered took place where ΔC>0. Such an interaction has been confirmed by the analysis of the aftershocks in the Colfiorito zone post September 26, 1997: about the 61% of the aftershocks considered took place where ΔC>0. The comparison between the ΔCs due to the coseismic stress transfer and the rate ΔĊt due to the tectonic stress allows us to quantify the time advance of the earthquakes. The ΔCs pattern shows positive values in two areas that can be regarded as historical seismic gaps.  相似文献   
110.
The Late Carboniferous–Early Permian Itararé Group is a thick glacial unit of the Paraná Basin. Five unconformity-bounded sequences have been defined in the eastern outcrop belt and recognized in well logs along 400 km across the central portion of the basin. Deglaciation sequences are present in the whole succession and represent the bulk of the stratigraphic record. The fining-upward vertical facies succession is characteristic of a retrogradational stacking pattern and corresponds to the stratigraphic record of major ice-retreat phases. Laterally discontinuous subglacial tillites and boulder beds occur at the base of the sequences. When these subglacial facies are absent, deglaciation sequences lie directly on the basal disconformities. Commonly present in the lowermost portions of the deglaciation sequences, polymictic conglomerates and cross-bedded sandstones are generated in subaqueous proximal outwash fans in front of retreating glaciers. The overlying assemblage of diamictites, parallel-bedded and rippled sandstones, and Bouma-like facies sequences are interpreted as deposits of distal outwash fan lobes. The tops of the deglaciation sequences are positioned in clay-rich marine horizons that show little (fine-laminated facies with dropstones) or no evidence of glacial influence on the deposition and likely represent periods of maximum ice retreat.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号