首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6988篇
  免费   990篇
  国内免费   904篇
测绘学   431篇
大气科学   285篇
地球物理   1734篇
地质学   2602篇
海洋学   570篇
天文学   2472篇
综合类   263篇
自然地理   525篇
  2024年   37篇
  2023年   108篇
  2022年   141篇
  2021年   198篇
  2020年   198篇
  2019年   245篇
  2018年   183篇
  2017年   211篇
  2016年   267篇
  2015年   276篇
  2014年   369篇
  2013年   355篇
  2012年   337篇
  2011年   313篇
  2010年   300篇
  2009年   509篇
  2008年   469篇
  2007年   597篇
  2006年   477篇
  2005年   401篇
  2004年   373篇
  2003年   350篇
  2002年   295篇
  2001年   266篇
  2000年   252篇
  1999年   244篇
  1998年   245篇
  1997年   124篇
  1996年   147篇
  1995年   91篇
  1994年   86篇
  1993年   76篇
  1992年   70篇
  1991年   43篇
  1990年   69篇
  1989年   41篇
  1988年   41篇
  1987年   25篇
  1986年   15篇
  1985年   12篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   4篇
  1980年   5篇
  1978年   4篇
  1977年   1篇
  1954年   5篇
排序方式: 共有8882条查询结果,搜索用时 31 毫秒
991.
We have used the Parkes Multibeam system and the Sloan Digital Sky Survey to assemble a sample of 195 galaxies selected originally from their H  i signature to avoid biases against unevolved or low surface brightness objects. For each source nine intrinsic properties are measured homogeneously, as well as inclination and an optical spectrum. The sample, which should be almost entirely free of either misidentification or confusion, includes a wide diversity of galaxies ranging from inchoate, low surface brightness dwarfs to giant spirals. Despite this diversity there are five clear correlations among their properties. They include a common dynamical mass-to-light ratio within their optical radii, a correlation between surface brightness and luminosity and a common H  i surface density. Such correlation should provide strong constrains on models of galaxy formation and evolution.  相似文献   
992.
993.
We present luminosity and surface-brightness distributions of 40 111 galaxies with K -band photometry from the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS), Data Release 3 and optical photometry from Data Release 5 of the Sloan Digital Sky Survey (SDSS). Various features and limitations of the new UKIDSS data are examined, such as a problem affecting Petrosian magnitudes of extended sources. Selection limits in K - and r -band magnitude, K -band surface brightness and K -band radius are included explicitly in the  1/ V max  estimate of the space density and luminosity function. The bivariate brightness distribution in K -band absolute magnitude and surface brightness is presented and found to display a clear luminosity–surface brightness correlation that flattens at high luminosity and broadens at low luminosity, consistent with similar analyses at optical wavelengths. Best-fitting Schechter function parameters for the K -band luminosity function are found to be   M *− 5 log  h =−23.19 ± 0.04, α=−0.81 ± 0.04  and  φ*= (0.0166 ± 0.0008)  h 3 Mpc−3  , although the Schechter function provides a poor fit to the data at high and low luminosity, while the luminosity density in the K band is found to be   j = (6.305 ± 0.067) × 108 L  h  Mpc−3  . However, we caution that there are various known sources of incompleteness and uncertainty in our results. Using mass-to-light ratios determined from the optical colours, we estimate the stellar mass function, finding good agreement with previous results. Possible improvements are discussed that could be implemented when extending this analysis to the full LAS.  相似文献   
994.
We consider the influence of magnetic fields on the model of neutrino-dominated accretion flows (NDAFs) for gamma-ray bursts (GRBs) via the assumption that the accretion rate of the disc is totally caused by the torque of the Lorentz force, i.e. the magnetic braking of large-scale magnetic fields and magnetic viscosity of small-scale magnetic fields. We calculate the structure, composition, luminosity of neutrino emission and the Poynting flux, and the rate of mass loss driven by neutrino heating or launched centrifugally by large-scale magnetic fields, based on the physical condition of the magnetized NDAFs. It is shown that the magnetized disc is favourable to interpret the diverse prompt emissions as well as the X-ray flares observed in the early afterglow of GRBs.  相似文献   
995.
Within the context of constraining an expansion of the dark energy equation of state   w ( z ),  we show that the eigendecomposition of Fisher matrices is sensitive to both the maximum order of the expansion and the basis set choice. We investigate the Fisher matrix formalism in the case that a particular function is expanded in some basis set. As an example we show results for an all-sky weak lensing tomographic experiment. We show that the set of eigenfunctions is not unique and that the best constrained functions are only reproduced accurately at very higher order   N ≳ 100  , a top-hat basis set requires an even higher order. We show that the common approach used for finding the marginalized eigenfunction errors is sensitive to the choice of  non- w ( z )  parameters and priors. The eigendecomposition of Fisher matrices is a potentially useful tool that can be used to determine the predicted accuracy with which an experiment could constrain   w ( z )  . It also allows for the reconstruction of the redshift sensitivity of the experiment to changes in   w ( z )  . However, the technique is sensitive to both the order and the basis set choice. Publicly available code is available as part of icosmo at http://www.icosmo.org .  相似文献   
996.
We present a state-of-the-art scenario for newly born magnetars as strong sources of gravitational waves (GWs) in the early days after formation. We address several aspects of the astrophysics of rapidly rotating, ultra-magnetized neutron stars (NSs), including early cooling before transition to superfluidity, the effects of the magnetic field on the equilibrium shape of NSs, the internal dynamical state of a fully degenerate, oblique rotator and the strength of the electromagnetic torque on the newly born NS. We show that our scenario is consistent with recent studies of supernova remnant surrounding Anomalous X-ray Pulsars (AXPs) and Soft Gamma-Ray Repeaters (SGRs) in the Galaxy that constrains the electromagnetic energy input from the central NS to be  ≤ 1051  erg. We further show that if this condition is met, then the GW signal from such sources is potentially detectable with the forthcoming generation of GW detectors up to Virgo cluster distances where an event rate ∼1 yr−1 can be estimated. Finally, we point out that the decay of an internal magnetic field in the 1016 G range couples strongly with the NS cooling at very early stages, thus significantly slowing down both processes: the field can remain this strong for at least 103 yr, during which the core temperature stays higher than several times 108 K.  相似文献   
997.
We discuss one of the possible origins of large-scale magnetic fields based on a continuous distribution of toroidal electric current flowing in the inner region of the disc around a Kerr black hole (BH) in the framework of general relativity. It turns out that four types of configuration of the magnetic connection (MC) are generated, i.e. MC of the BH with the remote astrophysical load (MCHL), MC of the BH with the disc (MCHD), MC of the plunging region with the disc (MCPD) and MC of the inner and outer disc regions (MCDD). It turns out that the Blandford–Znajek process can be regarded as one type of MC, i.e. MCHL. In addition, we propose a scenario for fitting the quasi-periodic oscillations in BH binaries based on MCDD associated with the magnetic reconnection.  相似文献   
998.
Various radio observations have shown that the hot atmospheres of galaxy clusters are magnetized. However, our understanding of the origin of these magnetic fields, their implications on structure formation and their interplay with the dynamics of the cluster atmosphere, especially in the centres of galaxy clusters, is still very limited. In preparation for the upcoming new generation of radio telescopes (like Expanded Very Large Array, Low Wavelength Array, Low Frequency Array and Square Kilometer Array), a huge effort is being made to learn more about cosmological magnetic fields from the observational perspective. Here we present the implementation of magnetohydrodynamics (MHD) in the cosmological smoothed particle hydrodynamics (SPH) code gadget . We discuss the details of the implementation and various schemes to suppress numerical instabilities as well as regularization schemes, in the context of cosmological simulations. The performance of the SPH–MHD code is demonstrated in various one- and two-dimensional test problems, which we performed with a fully, three-dimensional set-up to test the code under realistic circumstances. Comparing solutions obtained using athena , we find excellent agreement with our SPH–MHD implementation. Finally, we apply our SPH–MHD implementation to galaxy cluster formation within a large, cosmological box. Performing a resolution study we demonstrate the robustness of the predicted shape of the magnetic field profiles in galaxy clusters, which is in good agreement with previous studies.  相似文献   
999.
We demonstrate that a simple solar dynamo model, in the form of a Parker migratory dynamo with random fluctuations of the dynamo governing parameters and algebraic saturation of dynamo action, can at least qualitatively reproduce all the basic features of solar Grand Minima as they are known from direct and indirect data. In particular, the model successfully reproduces such features as an abrupt transition into a Grand Minimum and the subsequent gradual recovery of solar activity, as well as mixed-parity butterfly diagrams during the epoch of the Grand Minimum. The model predicts that the cycle survives in some form during a Grand Minimum, as well as the relative stability of the cycle inside and outside of a Grand Minimum. The long-term statistics of simulated Grand Minima appears compatible with the phenomenology of the Grand Minima inferred from the cosmogenic isotope data. We demonstrate that such ability to reproduce the Grand Minima phenomenology is not a general feature of the dynamo models but requires some specific assumption, such as random fluctuations in dynamo governing parameters. In general, we conclude that a relatively simple and straightforward model is able to reproduce the Grand Minima phenomenology remarkably well, in principle providing us with a possibility of studying the physical nature of Grand Minima.  相似文献   
1000.
W. Xie  H. Zhang  H. Wang 《Solar physics》2009,254(2):271-283
In this paper, we present a study of the correlation between the speed of flare ribbon separation and the magnetic flux density during the 10 April 2001 solar flare. The study includes the section of the neutral line containing the flare core and its peripheral area. This event shows clear two-ribbon structure and inhomogeneous magnetic fields along the ribbons, so the spatial correlation and distribution of the flare and magnetic parameters can be studied. A weak negative correlation is found between the ribbon separation speed (V r) and the longitudinal magnetic flux density (B z ). This correlation is the weakest around the peak of the flare. Spatially, the correlation is also weakest at the positions of the hard X-ray (HXR) sources. In addition, we estimate the magnetic reconnection rate (electric field strength in the reconnection region E rec) by combining the speed of flare ribbons and the longitudinal magnetic flux density. During flare evolution, the time profiles of the magnetic reconnection rate are similar to that of the ribbon separation speed, and the speeds of ribbon separation are relatively slow in the strong magnetic fields (i.e., V r is negatively correlated with B z ). However, along the flare ribbons, E rec fluctuates in a small range except near the HXR source. A localized enhancement of the reconnection rate corresponds to the position of the HXR source.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号