Through the study of mutual process between groundwater systems and eco-environmental water demand, the eco-environmental
water demand is brought into groundwater systems model as the important water consumption item and unification of groundwater’s
economic, environmental and ecological functions were taken into account. Based on eco-environmental water demand at Da’an
in Jilin province, a three-dimensional simulation and optimized management model of groundwater systems was established. All
water balance components of groundwater systems in 1998 and 1999 were simulated with this model and the best optimal exploitation
scheme of groundwater systems in 2000 was determined, so that groundwater resource was efficiently utilized and good economic,
ecologic and social benefits were obtained. 相似文献
Capacity based design of pile foundations limits the soil-structure interaction mechanism to group bearing capacity estimation, neglecting, in most cases, the contribution of the raft. On the other hand, a straightforward, nonlinear, 3-D analysis, accounting for soil and structural nonlinearities and the effects arising from pile–soil–pile interaction, would be extremely high CPU-time demanding and will necessitate the use of exceptionally powerful numerical tools. With the aim of investigating the most efficient, precise, and economical design for a bridge foundation, a hybrid method, compatible with the notion of sub-structuring is proposed. It is based on both experimental data and nonlinear 3-D analysis. The first step to achieve these targets is a back-analysis of a static pile load test, fitting values for soil shear strength, deformation modulus, and shear strength mobilization at the soil–pile interface. Subsequently, the response of 2 × 2 and 3 × 3 pile group configurations is numerically established and the distribution of the applied load to the raft and the characteristic piles is discussed. Finally, a design strategy for an optimized design of pile raft foundations subjected to non-uniform vertical loading is proposed. 相似文献
Individual based simulations of population dynamics require the availability of growth models with adequate complexity. For this purpose a simple-to-use model (non-linear multiple regression approach) is presented describing somatic growth and reproduction of Daphnia as a function of time, temperature and food quantity. The model showed a good agreement with published observations of somatic growth (r2 = 0.954, n = 88) and egg production (r2 = 0.898, n = 35). Temperature is the main determinant of initial somatic growth and food concentration is the main determinant of maximal body length and clutch size. An individual based simulation was used to demonstrate the simultaneous effects of food and temperature on the population level. Evidently, both temperature and food supply affected the population growth rate but at food concentrations above approximately 0.4 mg Cl−1Scenedesmus acutus temperature appeared as the main determinant of population growth.
Four simulation examples are given to show the wide applicability of the model: (1) analysis of the correlation between population birth rate and somatic growth rate, (2) contribution of egg development time and delayed somatic growth to temperature-effects on population growth, (3) comparison of population birth rate in simulations with constant vs. decreasing size at maturity with declining food concentrations and (4) costs of diel vertical migration. Due to its plausible behaviour over a broad range of temperature (2–20 °C) and food conditions (0.1–4 mg Cl−1) the model can be used as a module for more detailed simulations of Daphnia population dynamics under realistic environmental conditions. 相似文献