首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   605篇
  免费   79篇
  国内免费   238篇
地球物理   45篇
地质学   860篇
海洋学   4篇
综合类   5篇
自然地理   8篇
  2024年   11篇
  2023年   10篇
  2022年   13篇
  2021年   11篇
  2020年   13篇
  2019年   17篇
  2018年   27篇
  2017年   23篇
  2016年   21篇
  2015年   32篇
  2014年   28篇
  2013年   51篇
  2012年   63篇
  2011年   30篇
  2010年   22篇
  2009年   41篇
  2008年   32篇
  2007年   28篇
  2006年   36篇
  2005年   37篇
  2004年   40篇
  2003年   29篇
  2002年   28篇
  2001年   35篇
  2000年   16篇
  1999年   25篇
  1998年   36篇
  1997年   28篇
  1996年   28篇
  1995年   13篇
  1994年   16篇
  1993年   13篇
  1992年   18篇
  1991年   21篇
  1990年   7篇
  1989年   5篇
  1988年   5篇
  1987年   5篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
排序方式: 共有922条查询结果,搜索用时 46 毫秒
91.
The La Peña alkaline complex (LPC) of Miocene age (18–19 Ma) lies on the eastern front of the Precordillera (32°41ʹ34ʺS, 68°59ʹ48″W, 1400–2900 m a.s.l.), 30 km northwest of Mendoza city, Argentina. It is a subcircular massif of 19 km2 and 5 km in diameter, intruded in the metasedimentary sequence of the Villavicencio Formation of Silurian-Devonian age. It is the result of integration of multiple pulses derived from one or more deep magma chambers, which form a suite of silicate rocks grouped into: a clinopyroxenite body, a central syenite facies with a large breccia zone at the contact with the clinopyroxenite, bodies of malignite, trachyte and syenite porphyry necks, and a system of radial and annular dikes of different compositions. Its subcircular geometry and dike system distribution are frequent features of intraplate plutons or plutons emplaced in post-orogenic settings. These morphostructural features characterize numerous alkaline complexes worldwide and denote the importance of magmatic pressures that cause doming with radial and annular fracturing, in a brittle country rock. However, in the LPC, the attitude of the internal fabric of plutonic and subvolcanic units and the preferential layout of dikes match the NW–SE extensional fractures widely distributed in the host rock. This feature indicates a strong tectonic control linked to the structure that facilitate space for emplacement, corresponding to the brittle shear zone parallel to the N–S stratigraphy of the country rock. Shearing produced a system of discontinuities, with a K fractal fracture pattern, given by the combination of Riedel (R), anti-Riedel (R′), (P) and extensional (T) fracture systems, responsible for the control of melt migration by the opening of various fracture branches, but particularly through the NW–SE (T) fractures. Five different pulses would have ascent, (1) an initial one from which cumulate clinopyroxenite was formed, (2) a phase of mafic composition represented by dikes cross-cutting the clinopyroxenite, (3) a malignite facies that causes a small breccia in the clinopyroxenite, (4) a central syenite facies that develops breccias at the contact with the clinopyroxenite and, finally, (5) porphyry necks and a system of radial dikes intruding all units. At the moment of the emplacement different mechanisms would have acted, they summarized in: 1) opening of discontinuities synchronous to the magma circulation as the principal mechanism for formation of dikes and conduits; 2) stoping processes, that play an important role in the development of the breccia zone and enabling an efficient transference of material during the emplacement of the syenitic magma and 3) shear-related deformation (regional stress), affected the internal fabric of the facies, causing intracrystalline deformation and submagmatic flow, which is very evident in the central syenite intrusive. The kinematic analysis of shear planes allows proposing that emplacement of the LPC took place in a transtensive regime, which would have occurred in the back-arc of the Andes orogen, during a long period spanning from Miocene to the present, of the compressive deformation responsible, westward and at the same latitude, for the development of the Aconcagua fold and thrust belt.  相似文献   
92.
东南极拉斯曼丘陵镁铁质麻粒岩的变质作用演化   总被引:5,自引:4,他引:1  
拉斯曼丘陵(Larsemann Hills)位于东南极普里兹构造带的中部,研究该区麻粒岩的变质作用演化对于理解普里兹带的构造属性至关重要。通过对该区含石榴石镁铁质麻粒岩转石详细的岩相学观察表明,峰期前进变质阶段矿物组合(M1)由角闪石+斜方辉石+单斜辉石+斜长石+黑云母+钛铁矿±石英±磁铁矿组成,其峰期矿物组合(M2)为石榴石+斜方辉石+单斜辉石+角闪石+钛铁矿±磁铁矿±石英,而代表后期与降压有关的叠加变质组合(M3)为斜方辉石+斜长石+单斜辉石+黑云母+钛铁矿±磁铁矿。矿物化学分析,结果显示其中石榴子石和斜方辉石具有弱的成分环带特征。利用THERMOCALC软件在NCFMASHTO体系下对该麻粒岩进行了详细的热力学模拟,结合传统温压计和平均温压计算结果,得出不同阶段温压条件分别为650~750℃/5.5~6.5kb (M1),850~950℃/8~8.5kb (M2),800~900℃/5.5~7.5kb (M3)。其变质作用演化为典型的峰期后近等温减压的(ITD)顺时针P-T轨迹。通过区域上镁铁质麻粒岩的对比分析,我们认为该镁铁质麻粒岩可能来源拉斯曼丘陵基岩露头。结合已有的年代学资料,表明该镁铁质麻粒岩的峰期变质事件可能对应于晚元古代格林威尔期构造事件,而后期退变质作用与早古生代的泛非期构造事件有关,意味着泛非期普里兹带可能是陆内造山带。  相似文献   
93.
对大别山黄土岭麻粒岩中的锆石进行了LA-ICPMS微区微量元素分析.结果表明,黄土岭麻粒岩中锆石的不同区域有不同的微量元素组成,麻粒岩相变质锆石的大多数微量元素含量明显低于岩浆锆石,表明麻粒岩相变质条件下形成的锆石具有较低的微量元素组成.锆石及其共生矿物的微量元素分析结果表明,该麻粒岩中变质锆石Eu负异常是变质锆石形成时长石稳定存在的结果.锆石与石榴子石之间微量元素分配特点表明,变质锆石与石榴子石之间到达了平衡.这些结果表明,该样品的变质锆石形成于麻粒岩相峰期变质阶段,这些变质锆石区域测定的年龄结果对应于麻粒岩相峰期变质作用时间.锆石和共生矿物的微量元素分析对锆石的成因及得到的年龄的解释具有重要的指示意义.锆石与石榴子石之间微量元素的分配特征,不但可以指示锆石与石榴子石之间是否达到平衡,而且可以通过石榴子石这一"桥梁",为锆石的U-Pb年龄提供合理的p-T条件限定.  相似文献   
94.
Small pods of silica-undersaturated Al-rich and Mg-rich granulite facies rocks containing sapphirine, pleonastic spinel, kornerupine, cordierite, orthopyroxene, corundum, sillimanite and gedrite are scattered throughout the NE Strangways Range, Central Australia. These are divided into four distinct rock types, namely orthopyroxene-rich aluminous granofels and metapelitic gneisses containing sapphirine, spinel or kornerupine. Two granulite facies metamorphic events are recognized, of which only the first (M1) is considered in this paper. Peak metamorphic mineral parageneses indicate that the M1 thermal maximum occurred at approximately 900–950 °C and 8–9 kbar. All samples are characterized by profuse and diverse coronitic and symplectic reaction textures. These are interpreted as evidence for the sequential crossing of the following reactions in the system FMAS: cordierite + spinel + corundum = sapphirine + sillimanite, cordierite + spinel = orthopyroxene + sapphirine + sillimanite, sapphirine + spinel + sillimanite = orthopyroxene + corundum, sapphirine + sillimanite = cordierite + orthopyroxene + corundum. Phase stability relationships in FMAS and MASH indicate an anticlockwise P–T path terminated by isobaric cooling. Such a path is exemplified by early low-P mineral parageneses containing spinel, corundum and gedrite and the occurrence of both prograde and retrograde corundum. Reaction textures preserve evidence for an increase in aH2O and aB2O3 with progressive isobaric cooling. This hydrous retrogression resulted from crystallization of intimately associated M1 partial melt segregations. There is no evidence for voluminous magmatic accretion giving rise to the high M1 thermal gradient. The M1 P–T path may be the result of either lithospheric thinning after both crustal thickening and burial of the supracrustal terrane, or concomitant crustal thickening and mantle lithosphere thinning.  相似文献   
95.
The Flatraket Complex, a granulite facies low strain enclave within the Western Gneiss Region, provides an excellent example of metastability of plagioclase‐bearing assemblages under eclogite facies conditions. Coesite eclogites are found <200 m structurally above and <1 km below the Flatraket Complex, and are separated from it by amphibolite facies gneisses related to pervasive late‐orogenic deformation and overprinting. Granulites within the Flatraket Complex equilibrated at 9–11 kbar, 700–800°C. These predate eclogite facies metamorphism and were preserved metastably in dry undeformed zones under eclogite facies conditions. Approximately 5% of the complex was transformed to eclogite in zones of fluid infiltration and deformation, which were focused along lithological contacts in the margin of the complex. Eclogitisation proceeded by domainal re‐equilibration and disequilibrium breakdown of plagioclase by predominantly hydration reactions. Both hydration and anhydrous plagioclase breakdown reactions were kinetically linked to input of fluid. More pervasive hydration of the complex occurred during exhumation, with fluid infiltration linked to dehydration of external gneisses. Eclogite facies shear zones within the complex equilibrated at 20–23 kbar, 650–800°C, consistent with the lack of coesite and with the equilibration conditions of external HP eclogites. If the complex experienced pressures equivalent to those of nearby coesite eclogites (> 28 kbar), unprecedented metastability of plagioclase and quartz is implied. Alternatively, a tectonic break exists between the Flatraket Complex and UHP eclogites, supporting the concept of a tectonic boundary to the UHP zone of the Western Gneiss Region. The distribution of eclogite and amphibolite facies metamorphic overprints demonstrates that the reactivity of the crust during deep burial and exhumation is strongly controlled by fluid availability, and is a function of the protolith.  相似文献   
96.
《International Geology Review》2012,54(10):1150-1162
Late Cretaceous calc-alkaline granites in the Gyeongsang Basin evolved through the mixing of mafic and felsic magmas. The host granites contain numerous mafic magmatic/microgranular enclaves of various shapes and sizes. New SHRIMP-RG zircon U–Pb ages of both granite and mafic magmatic/microgranular enclaves are 75.0?±?0.5 Ma and 74.9?±?0.6 Ma, respectively, suggesting that they crystallized contemporaneously after magma mixing. The time of injection of mafic melt into the felsic magma chamber can be recognized as approximately 75 Ma by field relations, petrographic features, geochemical evolution, and SHRIMP-RG zircon dating. This Late Cretaceous magma mixing event in the Korean Peninsula was probably related to the onset of subduction of the Izanagi (Kula)–Pacific ridge.  相似文献   
97.
东准噶尔玛因鄂博地区发育一典型的小型增生楔, 增生楔中辉长岩岩块具有高铝(Al2O3:14.38%~16.33%), 高钛(TiO2:1.81%~2.46%), 贫钾(K2O:0.17%~0.63%)的地球化学特征。相对富集大离子亲石元素(Sr、K、Rb、Ba), 高场强元素(Nb、Ta、Zr、Hf)没有明显的异常, 源区具有类似于洋脊玄武岩的特征。基性岩块具有类似于E-MORB和OIB的稀土元素配分形式, 没有出现Nb、Ta、Ti的明显亏损, 说明其形成过程中可能没有受到或受到较弱的消减带影响, 综合上述认识, 认为夹于增生楔中的此类基性岩块体很可能来源于洋壳俯冲过程中增生的海山残片;根据玛因鄂博增生楔物质组成特征以及前人的相关年代学证据表明该增生楔形成于古生代弧后盆地环境, 在晚泥盆世之前形成俯冲增生杂岩体。  相似文献   
98.
FT-IR spectra of sillimanite samples from high grade regionally metamorphosed rocks belonging to the granulite terrain (amphibolite to pyroxene granulite facies) deciphers prominent OH features. Heating experiments indicate growth of prominent band at 3161cm−1. Heating above 1000°C all OH features disappear in intensity into broad features with slight shift of bands towards lower energies. Complete dehydration requires temperatures above 1000°C. Coexistence of boron and OH features are also observed in all sillimanite samples. The high temperature behaviour of sillimanite from the granulite terrain discerns that the hydrous species in sillimanite were incorporated much below 700°C, however, secondary hydration due to pegmatite activity, retrograde metamorphism and migmatisation is not ruled out. Thus a near anhydrous condition were probably not achieved during the granulite facies metamorphism in Eastern ghat granulite terrain.  相似文献   
99.
Abstract Spinel-quartz-cordierite and spinel-quartz are found as relic prograde assemblages in Fe-rich granulites from the Araku area, Eastern Ghats belt, India. Subsequent reactions produced orthopyroxene + sillimanite in the former association and garnet + sillimanite in the latter. The first reaction is univariant in the FMAS system, but is trivariant in the present case because of the presence of Zn and Fe3+ in spinel. The second reaction also has high variance because of Zn and Fe3+, but also because of the presence of Ca in garnet. Thermobarometry shows that the metamorphic conditions were approximately 950° C and 8.5 kbar and the fo 2 was near the NNO buffer. In Fe-rich bulk compositions and low- P -high- T conditions of metamorphism, two of the univariant reactions around the invariant point [Sa], namely (Sa, Hy) and (Sa, Cd), change topology due to reverse partitioning of Fe-Mg between coexisting garnet and spinel. An alternative partial petrogenetic grid in the system FMAS is constructed for such conditions and is applied satisfactorily to several sapphirine-free spinel granulites. It is shown that bulk composition ( X Fe and Zn) exerts greater control on the stability of spinel + quartz than fo 2. The effect of the presence of Zn and Fe3+ in spinel on the proposed grid is evaluated. Reaction textures in the Araku spinel granulites can be explained from the petrogenetic grid as due to near-isobaric cooling.  相似文献   
100.
ABSTRACT The high-grade rocks (metapelite, quartzite, metagabbro) of the Hisøy-Torungen area represent the south-westernmost exposures of granulites in the Proterozoic Bamble sector, south Norway. The area is isoclinally folded and a metamorphic P–T–t path through four successive stages (M1-M4) is recognized. Petrological evidence for a prograde metamorphic event (M1) is obtained from relict staurolite + chlorite + albite, staurolite + hercynite + ilmenite, cordierite + sillimanite, fine-grained felsic material + quartz and hercynite + biotite ± sillimanite within metapelitic garnet. The phase relations are consistent with a pressure of 3.6 ± 0.5 kbar and temperatures up to 750–850°C. M1 is connected to the thermal effect of the gabbroic intrusions prior to the main (M2) Sveconorwegian granulite facies metamorphism. The main M2 granulite facies mineral assemblages (quartz+ plagioclase + K-feldspar + garnet + biotite ± sillimanite) are best preserved in the several-metre-wide Al-rich metapelites, which represent conditions of 5.9–9.1 kbar and 790–884°C. These P–T conditions are consistent with a temperature increase of 80–100°C relative to the adjacent amphibolite facies terranes. No accompanying pressure variations are recorded. Up to 1-mm-wide fine-grained felsic veinlets appear in several units and represent remnants of a former melt formed by the reaction: Bt + Sil + Qtz→Grt + lq. This dehydration reaction, together with the absence of large-scale migmatites in the area, suggests a very reduced water activity in the rocks and XH2O = 0.25 in the C–O–H fluid system was calculated for a metapelitic unit. A low but variable water activity can best explain the presence or absence of fine-grained felsic material representing a former melt in the different granulitic metapelites. The strongly peraluminous composition of the felsic veinlets is due to the reaction: Grt +former melt ± Sil→Crd + Bt ± Qtz + H2O, which has given poorly crystalline cordierite aggregates intergrown with well-crystalline biotite. The cordierite- and biotite-producing reaction constrains a steep first-stage retrograde (relative to M2) uplift path. Decimetre- to metre-wide, strongly banded metapelites (quartz + plagioclase + biotite + garnet ± sillimanite) inter-layered with quartzites are retrograded to (M3) amphibolite facies assemblages. A P–T estimate of 1.7–5.6 kbar, 516–581°C is obtained from geothermobarometry based on rim-rim analyses of garnet–biotite–plagioclase–sillimanite–quartz assemblages, and can be related to the isoclinal folding of the rocks. M4 greenschist facies conditions are most extensively developed in millimetre-wide chlorite-rich, calcite-bearing veins cutting the foliation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号