首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   27篇
  国内免费   3篇
地球物理   45篇
地质学   26篇
海洋学   3篇
综合类   1篇
自然地理   6篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   5篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   6篇
  2013年   9篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   1篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1995年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1954年   1篇
排序方式: 共有81条查询结果,搜索用时 46 毫秒
41.
We found active faults in the fold and thrust belt between Tunglo town and the Tachia River in northwestern Taiwan. The surface rupture occurred in 1999 and 1935 nearby the study area, but no historical surface rupture is recorded in this area, suggesting that the seismic energy has been accumulated during the recent time. Deformed fluvial terraces aid in understanding late Quaternary tectonics in this tectonically active area. This area contains newly identified faults that we group as the Tunglo Fault System, which formed after the area's oldest fluvial terrace and appears at least 16 km long in roughly N–S orientation. Its progressive deformations are all recorded in associated terraces developed during the middle to late Quaternary. In the north, the system consists of two subparallel active faults, the Tunglo Fault and Tunglo East Fault, striking N–S and facing each other from opposite sides of the northward flowing Hsihu River, whose course may be controlled by interactions of above-mentioned two active faults. The northern part of the Tunglo Fault, to the west of the river, is a reverse fault with upthrown side on the west; conversely the Tunglo East Fault, to the east, is also a reverse fault, but with upthrown side on the east. Both faults are marked by a flexural scarp or eastward tilting of fluvial terraces. Considering a Quaternary syncline lies subparallel to the east of this fault system, the Tunglo Fault might be originated as a bending moment fault and the Tunglo East Fault as a flexural slip fault. However, they have developed as obvious reverse faults, which have progressive deformation under E–W compressive stress field of Taiwan. Farther south, a west-facing high scarp, the Tunglo South Fault, strikes NNE–SSW, oblique to the region's E–W direction of compression. Probably due to the strain partitioning, the Tunglo South Fault generates en echelon, elongated ridges and swales to accommodate right-lateral strike–slip displacement. Other structures in the area include eastward-striking portion of the Sanyi Fault, which has no evidence for late Quaternary surface rupture on this fault; perhaps slip on this part of Sanyi Fault ceased when the Tunglo Fault System became active.  相似文献   
42.
黄土覆盖的阶地陡坎附近渭河断裂活断层探测   总被引:2,自引:1,他引:1       下载免费PDF全文
陕西咸阳渭河北岸窑店、石何杨、杜家堡渭河断裂活断层探测结果表明,对于有黄土覆盖的、与阶地陡坎重合的活断层探测,要综合采用地形地貌分析、浅层人工地震、钻探和探槽等方法进行。特别是对于钻孔探测,要深、中、浅孔结合。首先用中、深孔确定断层在深部的位置,再用浅孔确定断层在近地表的位置和活动性。由于河流侵蚀,阶地陡坎区的河流相沉积地层是倾斜的,风成的古土壤层披盖在已有的倾斜地层上亦呈倾斜状态,因此,用以上地层判断断层的位置和活动量时,钻孔孔距一定要小,以2~3m为宜,孔距太大,会把侵蚀形成的已有陡坎高度加入断层的错距中,严重放大断层的错动量。探测结果表明,渭河断裂在窑店、石何杨、杜家堡等处与Ⅲ级阶地陡坎重合。该断裂在阶地陡坎上的活动量很小,错断晚更新世第1古土壤层1~2m,远小于2个阶地面的高差。可见,以前认为S1错距4.8m、17.94m是不准确的。  相似文献   
43.
The Qilianshan north-edge thrust (QNT)is located at the boundary between the northern margin of the Qilianshan mountain and Hexi Corridor, with a length over 700km. The Minle-Damaying fault (MDF), trending NWW, is part of the eastern section of the QNT, cutting through the Minle and Wuwei Basins. Hexi Corridor is a region of intense seismic activities, where many large earthquakes have been documented in history, such as the M7.5 Gaotai earthquake in 180, M8.5 Haiyuan earthquake in 1920, M8.0 Gulang earthquake in 1927 and the M7.6 Changma earthquake in 1932. While, there is no seismic record on the MDF. The Dongda River flows across the MDF from south to north. One of the tributary of the Dongda River, Xie River, has very well preserved terraces (T6-T1)which were offset by the MDF. On these terraces, there is clear trace of scarps, of which the height increases from terraces T3 to T6, indicating an accumulation of offset with time. In order to acquire the cross-section of scarps, unmanned aerial vehicle (UAV)scanning was implemented. With a digital camera mounted on, the UAV scanned an area of 0.52km2 and digital elevation model (DEM)was generated with an accuracy of 0.2m vertically. The Thompson's method was utilized to conduct linear regressions on both the hanging wall and foot wall of the fault. The difference between the intercepts of the regression lines with the vertical line going through the intersection of the scarp surface on the fault surface is considered as the vertical offset. Terraces from T6 to T3 are very well preserved where MFD intercepts the Xie river, while T2 and T1 are badly eroded at the same location. Utilizing the cross-sections extracted from high resolution DEM, we estimate that the vertical offsets of T6-T3 are 13.26~15.67m, 9.74~10.13m, 5.86~7.35m and 5.03~5.60m, respectively, with 95%confidence interval. From the offsets of terraces, at least 4 paleo-seismic events are indentified. Terraces were dated by the AMS 14 C dating, yielding ages (cal BP)of T6-T2 as (16 405±210)a, (111 975±21)a, (5 697.5±210)a, (4 470.5±54.5)a and (3 137.5±77.5)a. Liner regression was performed for the relation between the ages and the offsets of terraces, resulting in the average vertical slip rate of MDF since the formation of T6 as 0.91 average v. As the dip of MDF is about 35°, the shortening rate is estimated to be (1.3±0.13)mm/a. This study provides important parameters for the analysis of seismic activity in heavily populated Minle and Yongchang areas.  相似文献   
44.
The complete natural drainage in 2008, 2011, and 2012 of Mountain Lake in Giles County, Virginia, allowed detailed observations of the only natural lake basin in the southern Appalachian Mountains. Here we use these observations to support geomorphic analysis and develop a model of basin evolution, which may advance the understanding of rare flow‐through lakes with subsurface drainage elsewhere. Key features included (a) an angle‐of‐repose slope with a smoothly concave planform across the entire 260 m width of the north end of the basin, (b) an arc of steep‐sided depressions along the deep northern margin of the basin floor, and (c) an abrupt transition between colluvial and finer‐grained sedimentary deposits on the floor. Our geomorphic analysis suggests that subsurface erosion has enabled long‐term northward scarp retreat in the basin by removing water and sediment. Mountain Lake formed on the northern limb of a breached anticline along the Eastern Continental Divide, where strong‐over‐weak stratigraphy and a small watershed have enabled the basin to evolve generally as follows. (1) Pond Drain, a first‐order tributary of the New River, incised north‐dipping sandstones and underlying shales on the northern limb of the anticline. The valley floor subsequently accumulated meters to tens of meters of mostly late Pleistocene colluvial fill. (2) Subsurface drainage developed likely along the contact between the sandstones and shales, facilitated by pre‐existing fractures. (3) Ongoing subsurface erosion has progressively undermined the sandstone, causing scarp retreat along the northern margin of the basin while a surface stream intermittently incised the shallow southern end. Sedimentary deposits indicate that only the deeper northern portion of the basin is usually flooded under Holocene conditions. Our basin evolution model suggests slow development of the basin over hundreds of thousands of years rather than sudden damming by a catastrophic landslide. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
45.
The Youshashan Fault lies in the south flank of Yingxiongling anticline, southwestern margin of Qaidam Basin. The Yingxiongling anticline is one of the most active neotectonics, situated at the front of folds expanding southward in the Qaidam Basin. Research on the paleoseimology and Late Quaternary slip rate of this fault is important for hazard assessment and understanding tectonic deformation in this area. We excavated a 27-m-long trench across the Youshashan fault where a pressure bridge formed on the Holocene alluvial fans, measured a profile of the fold scarp created by the fault west of the Youshashan mountain, and collected several samples of finer sands for luminescence dating. Analysis of these data shows that(1) The Youshashan Fault is a Holocene active feature. The fold scarp in the basin indicates that this fault has been active along a same surface trace since at least mid-late Pleistocene. At least two paleoseismic events are revealed by trenching, both occurred in Holocene. The latest event Ⅱ in the trench happened after 500a. The current information fails to confidently support that it is the 1977 Mangya M6.4 earthquake, but cannot excludes the possibility of it is related to this earthquake. The other event Ⅰ occurred about between 1 000a to 4 000a. Erosion after the event Ⅰ prevents us to constrain the event age and to identify more events further. (2)The vertical slip rate of the Youshashan fault is about(0.38±0.06)mm/a since mid-late Pleistocene. Comparing with relative speeds of GPS sites across the Yingxiongling anticline suggests that the Youshashan fault is an important structure which is accommodating crustal shortening in this region.  相似文献   
46.
哈密盆地北线活动断裂带走向北西西,断续长180km。8条剖面的GPS测量结果显示,断坎坡度为15°~18°及31°~33°.单个断崖高3~10m。由年代学资料计算出该断裂带中全新世垂直活动速率为0.65±0.08mm/a,比晚更新世晚期垂直活动速率有所增大。  相似文献   
47.
北京平谷地区地表陡坎的成因识别   总被引:2,自引:0,他引:2       下载免费PDF全文
江娃利 《地震地质》1999,21(4):309-315
根据对北京平谷三河地区地表陡坎的观察比较,研究了河流侵蚀陡坎与断层陡坎的微地貌形态差异。河流侵蚀形成陡坎的方向追随河流的冲沟方向,具不稳定性,并且陡坎的倾向沿河对称。断层陡坎的展布不受河流方向的影响,断层以倾向活动为主时,陡坎两盘的运动方向稳定。研究结果表明,平谷地区的地表陡坎是河流侵蚀陡坎。同时,还从构造地貌学与地层沉积学的角度,分析了平原区河流侵蚀沉积与断层断错沉积的特征,指出平谷地区的浅层人工地震探测及浅钻资料存在两种解释的可能性  相似文献   
48.
杨纪林 《内陆地震》2000,14(2):128-131
在北天山中段第一排构造外围的宁家河-三个泉河之间,有一由北倾断裂形成的反向陡坎。该陡坎应为断裂多次错动的结果,陡坎形成初期,坎南为断塞塘,沉积物年龄为5000a。在宁家河剖面可见河谷阶地砾石向上游倾斜;Ⅱ级阶地错动3 ̄4m。依断裂模式归类,江南庙断裂为后逆冲断裂。这类断裂中否能发生7级以上地震,断裂坎是否是古地震造成,目前尚不能确定。  相似文献   
49.
高大并且广泛分布的构造悬崖是全球构造地貌的重要组成部分,是南方大陆和次大陆边缘的基本构造地形类型,同时也发育在亚洲东部的陆-洋过渡区。它们位于大陆边缘区的后缘,其地球动力学作用以大陆架、大陆斜坡和边缘海沉降区域的裂谷作用为特征。大悬崖的形成始于大陆岩石圈的变薄和裂解,持续发育过程较长,期间经历一系列的平行后退过程——即所谓构造夷平作用,导致大陆架沉积基准面的形成。大悬崖见于被动大陆边缘以及西太平洋陆-洋过渡带后缘。在陆内区域大悬崖不常见,而是在陆地升、降交界边缘区域出现其他的地貌构造特征。  相似文献   
50.
通过对汗母坝-澜沧断裂晚第四纪地质、地貌实地调查与测量,并结合前人研究成果,讨论了该断裂晚第四纪最新构造活动特征。综合分析认为,汗母坝-澜沧断裂为一条以右旋走滑为主的全新世活动断裂,长约120 km,整体走向NNW。该断裂活动习性具有明显的分段特征,北段称为汗母坝断裂,是1988年耿马7.2级地震的发震断裂;南段称为澜沧断裂,是1988年澜沧7.6级地震的发震断裂之一。晚第四纪以来其新活动形成了丰富的断错地貌现象,如冲沟和山脊右旋位错、断层沟槽、断层垭口、断层陡坎、断陷凹坑等。根据断裂断错地貌特征的相应资料估计,该断裂晚第四纪右旋走滑速率约为(4.7±0.5) mm/a。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号