首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1921篇
  免费   234篇
  国内免费   210篇
测绘学   486篇
大气科学   64篇
地球物理   458篇
地质学   933篇
海洋学   108篇
天文学   11篇
综合类   210篇
自然地理   95篇
  2024年   3篇
  2023年   4篇
  2022年   30篇
  2021年   52篇
  2020年   55篇
  2019年   58篇
  2018年   68篇
  2017年   108篇
  2016年   106篇
  2015年   127篇
  2014年   118篇
  2013年   169篇
  2012年   108篇
  2011年   127篇
  2010年   90篇
  2009年   118篇
  2008年   146篇
  2007年   121篇
  2006年   115篇
  2005年   107篇
  2004年   80篇
  2003年   63篇
  2002年   37篇
  2001年   46篇
  2000年   59篇
  1999年   38篇
  1998年   36篇
  1997年   36篇
  1996年   22篇
  1995年   21篇
  1994年   17篇
  1993年   16篇
  1992年   17篇
  1991年   6篇
  1990年   9篇
  1989年   6篇
  1988年   6篇
  1987年   5篇
  1986年   2篇
  1985年   5篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1973年   1篇
  1954年   2篇
排序方式: 共有2365条查询结果,搜索用时 281 毫秒
991.
In this paper, we present a conceptual‐numerical model that can be deduced from a calibrated finite difference groundwater‐flow model, which provides a parsimonious approach to simulate and analyze hydraulic heads and surface water body–aquifer interaction for linear aquifers (linear response of head to stresses). The solution of linear groundwater‐flow problems using eigenvalue techniques can be formulated with a simple explicit state equation whose structure shows that the surface water body–aquifer interaction phenomenon can be approached as the drainage of a number of independent linear reservoirs. The hydraulic head field could be also approached by the summation of the head fields, estimated for those reservoirs, defined over the same domain set by the aquifer limits, where the hydraulic head field in each reservoir is proportional to a specific surface (an eigenfunction of an eigenproblem, or an eigenvector in discrete cases). All the parameters and initial conditions of each linear reservoir can be mathematically defined in a univocal way from the calibrated finite difference model, preserving its characteristics (geometry, boundary conditions, hydrodynamic parameters (heterogeneity), and spatial distribution of the stresses). We also demonstrated that, in practical cases, an accurate solution can be obtained with a reduced number of linear reservoirs. The reduced computational cost of these solutions can help to integrate the groundwater component within conjunctive use management models. Conceptual approximation also facilitates understanding of the physical phenomenon and analysis of the factors that influence it. A simple synthetic aquifer has been employed to show how the conceptual model can be built for different spatial discretizations, the parameters required, and their influence on the simulation of hydraulic head fields and stream–aquifer flow exchange variables. A real‐world case was also solved to test the accuracy of the proposed approaches, by comparing its solution with that obtained using finite‐difference MODFLOW code. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
992.
The solution describing the wellbore flow rate in a constant‐head test integrated with an optimization approach is commonly used to analyze observed wellbore flow‐rate data for estimating the hydrogeological parameters of low‐permeability aquifers. To our knowledge, the wellbore flow‐rate solution for the constant‐head test in a two‐zone finite‐extent confined aquifer has never been reported so far in the literature. This article is first to develop a mathematical model for describing the head distribution in the two‐zone aquifer. The Laplace domain solutions for the head distributions and wellbore flow rate in a two‐zone finite confined aquifer are derived using the Laplace transform, and their corresponding time domain solutions are then obtained using the Bromwich integral method and residue theorem. These new solutions are expressed in terms of an infinite series with Bessel functions and not straightforward to calculate numerically. A large‐time solution for the wellbore flow rate is therefore developed by employing the relationship of small Laplace variable versus large time variable and L'Hospital's rule. The result shows that the large‐time solution is identical to the steady‐state solution obtained after applying the Tauberian theorem into the Laplace domain solution. This large‐time solution can reduce to the Thiem equation in the case of no skin. Finally, the newly developed solution is used to investigate the effects of outer boundary distance and conductivity ratio on the wellbore flow rate. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
993.
A structure model was used to analyse solute‐transport parameter estimates based on tracer breakthrough curves. In the model system, groundwater flow is envisioned to be organised in a complex conduit network providing a variety of short circuits with relative small carrying capacities along different erosion levels. The discharge through the fully filled conduits is limited owing to void geometries and turbulent flow; thus, a hierarchic overflow system evolves where conduits are (re‐)activated or dried up depending on the flow condition. Exemplified on the Lurbach–Tanneben karst aquifer, the applicability of the model approach was tested. Information derived from multi‐tracer experiments performed at different volumetric flow rates enabled to develop a structural model of the karst network, under constraint of the geomorphological and hydrological evolution of the site. Depending on the flow rate, groundwater is divided into up to eight flow paths. The spatial hierarchy of flow paths controls the sequence of flow path activation. Conduits of the topmost level are strongly influenced by reversible alteration processes. Sedimentation or blocking causes an overflow of water to the next higher conduit. Flow path specific dissolutional denudation rates were estimated using the temporal development of the partial discharge. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
994.
http://www.sciencedirect.com/science/article/pii/S1674987112000254   总被引:1,自引:0,他引:1  
The applications of intelligent techniques have increased exponentially in recent days to study most of the non-linear parameters.In particular,the behavior of earth resembles the non-linearity applications.An efficient tool is needed for the interpretation of geophysical parameters to study the subsurface of the earth.Artificial Neural Networks(ANN) perform certain tasks if the structure of the network is modified accordingly for the purpose it has been used.The three most robust networks were taken and comparatively analyzed for their performance to choose the appropriate network.The single-layer feed-forward neural network with the back propagation algorithm is chosen as one of the well-suited networks after comparing the results.Initially,certain synthetic data sets of all three-layer curves have been taken for training the network,and the network is validated by the Held datasets collected from Tuticorin Coastal Region(78°7′30″E and 8°48′45″N),Tamil Nadu.India.The interpretation has been done successfully using the corresponding learning algorithm in the present study.With proper training of back propagation networks,it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data concerning the synthetic data trained earlier in the appropriate network.The network is trained with more Vertical Electrical Sounding(VES) data,and this trained network is demonstrated by the field data.Groundwater table depth also has been modeled.  相似文献   
995.
The hydrogeochemical characteristics of the Cabo de Gata coastal aquifer (southeastern Spain) were studied in an attempt to explain the anomalous salinity of its groundwater. This detritic aquifer is characterised by the presence of waters with highly contrasting salinities; in some cases the salinity exceeds that of seawater. Multivariate analysis of water samples indicates two groups of water (G1 and G2). Group G1 is represented in the upper part of the aquifer, where the proportion of seawater varies between 10 and 60%, whilst G2 waters, taken from the lower part of the aquifer, contain 60−70% seawater. In addition, hydrogeochemical modelling was applied, which reveals that the waters have been subject to evaporation between 25 and 35%. There was a good agreement between the modelled results and the observed water chemistry. This evaporation would have occurred during the Holocene, in a coastal lagoon environment; the resulting brines would have infiltrated into the aquifer and, due to their greater density, sunk towards the impermeable base. The characteristics of this water enabled us to reconstruct the interactions that must have occurred between the coastal aquifer and the lagoon, and to identify the environmental conditions that prevailed in the study area during the Middle Holocene.  相似文献   
996.
In the Red River Delta, situated in the northern part of Vietnam, nearly its entire population depends solely on groundwater for daily water consumptions. For this reason, groundwater quality assessments must be carefully carried out using hydrogeochemical properties, to ensure effective groundwater resource planning for the Delta’s present and future groundwater use. In this study, the spatial and seasonal changes in the hydrogeochemical characteristics of groundwater in the two main aquifers of the RRD were investigated by analyzing the physicochemical data obtained in 2011 from 31 conjunctive wells in the Delta’s Holocene unconfined aquifer (HUA) and Pleistocene confined aquifer (PCA) using the Piper diagram and the Gibbs diagram. Results of the data analysis show that the groundwater in both aquifers in the upstream area of the delta is dominated by the [Ca2+–HCO3] water-type, while the [Na+–Cl] dominates along the middle-stream and downstream areas. Seasonal changes in the hydrogeochemical facies in both aquifers, comparing the results for the dry and the rainy seasons, were detected in about one third of the sampling wells, which were mainly located at the upstream portion of the Delta. The hydrogeochemical facies of HUA were different from that of PCA by about 45% of the sampling wells in both the dry and the rainy seasons, which were found mostly in the upstream and middle-stream areas.  相似文献   
997.
平顶山市瑞平公司张村矿二1-11080采面最低标高-306.0m,最高水位+90m,承受的最大水压3.96MPa,临界突水系数0.088MPa/m,属带压采面。为保证采面回采过程中不发生突水事故,采面首先进行了地面三维地震勘探、瞬变电法勘探,进而在掘进期间又进行了瞬变电磁及高分辨电法仪联合探测,最后结合突水系数法,圈定了采面突水异常区。在生产期间,通过完善排水系统、重点区域的注浆改造,最终实现了采面的带压开采。结果表明,采面涌水量小于5m3/h,采出原煤78万t,经济效益和社会效益显著。  相似文献   
998.
为确定潜水含水层的渗透系数,施工了一个主抽水井和两个观测井,采用了潜水含水层稳定流完整井多孔、单孔抽水试验的公式法、非稳定流的完整井的半对数直线图解法和基于抽水试验资料处理软件的纽曼模型求参法三种方法进行计算,结果发现各计算方法的结果相差不大,能够相互验证。最后,选取半对数直线图解法的计算结果作为最终计算结果。该研究对潜水含水层渗透系数的计算有一定的参考价值。  相似文献   
999.
龙场煤矿南回风井采用立井开拓方式,设计直径φ5.5m,掘深268m。根据井检施工报告,揭露断层破碎带一处,含水层3段,预计涌水量37m^3/h。按照立井施工规范,必须进行预注浆处理。为此,设计共分三个层序,每层序各3孔共9孔(其中最后层序3个孔为检验加强孔)。因业主不同意施工第三层序孔,预注浆处理后井筒涌水量将近10m^3/h,但仍未达到全井少于6m^3/h的目的,以致未达到设计目的,增加了施工难度,延缓了工期。本文就注浆施工从设计到施工进行剖析,指出施工中的得失,对类似工程有指导作用。  相似文献   
1000.
针对EIV模型系数阵病态且系数阵和观测值精度不同的情形,基于拉格朗日乘数法导出病态加权总体最小二乘模型的正则化解法,并证明已有的等权病态总体最小二乘模型的正则化解法是其特例。在此基础上,进一步提出基于中位数法的病态加权总体最小二乘模型的正则化抗差解法,并用第一类Fredholm积分方程和病态测边网两个算例验证算法的有效性。结果表明,受系数阵病态性以及粗差的影响,最小二乘解和总体最小二乘解精度较差,严重偏离真值;正则化解法在顾及系数阵和观测值误差的同时可有效削弱模型的病态性,其精度较最小二乘解和总体最小二乘解有所提升;而正则化抗差解法在正则化解的基础上,利用等价权函数重构权阵,能有效抵御粗差的影响,其精度最高。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号