首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1054篇
  免费   167篇
  国内免费   113篇
测绘学   10篇
大气科学   52篇
地球物理   192篇
地质学   650篇
海洋学   88篇
天文学   16篇
综合类   36篇
自然地理   290篇
  2024年   1篇
  2023年   8篇
  2022年   20篇
  2021年   38篇
  2020年   26篇
  2019年   56篇
  2018年   31篇
  2017年   39篇
  2016年   35篇
  2015年   40篇
  2014年   41篇
  2013年   65篇
  2012年   40篇
  2011年   42篇
  2010年   42篇
  2009年   54篇
  2008年   60篇
  2007年   61篇
  2006年   62篇
  2005年   64篇
  2004年   51篇
  2003年   38篇
  2002年   44篇
  2001年   56篇
  2000年   52篇
  1999年   43篇
  1998年   34篇
  1997年   43篇
  1996年   33篇
  1995年   20篇
  1994年   21篇
  1993年   16篇
  1992年   11篇
  1991年   7篇
  1990年   13篇
  1989年   10篇
  1988年   5篇
  1987年   6篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1971年   1篇
排序方式: 共有1334条查询结果,搜索用时 421 毫秒
121.
The snowball Earth hypothesis describes episodes of Neoproterozoic global glaciations, when ice sheets reached sea‐level, the ocean froze to great depth and biota were decimated, accompanied by a complete shutdown of the hydrological cycle. Recent studies of sedimentary successions and Earth systems modelling, however, have brought the hypothesis under considerable debate. The Squantum ‘Tillite’ (Boston Basin, USA), is one of the best constrained snowball Earth successions with respect to age and palaeogeography, and it is suitable to test the hypothesis for the Gaskiers glaciation. The approach used here was to assess the palaeoenvironmental conditions at the type locality of the Squantum Member through an analysis of sedimentary facies and weathering regime (chemical index of alteration). The stratigraphic succession with a total thickness of ca 330 m documents both glacial and non‐glacial depositional environments with a cool‐temperate glacial to temperate non‐glacial climate weathering regime. The base of the succession is composed of thin diamictites and mudstones that carry evidence of sedimentation from floating glacial ice, interbedded with inner shelf sandstones and mudstones. Thicker diamictites interbedded with thin sandstones mark the onset of gravity flow activity, followed by graded sandstones documenting channellized mass gravity flow events. An upward decrease in terrigenous supply is evident, culminating in deep‐water mudstones with a non‐glacial chemical weathering signal. Renewed terrigenous supply and iceberg sedimentation is evident at the top of the succession, beyond which exposure is lost. The glacially influenced sedimentary facies at Squantum Head are more consistent with meltwater dominated alpine glaciation or small local ice caps. The chemical index of alteration values of 61 to 75 for the non‐volcanic rocks requires significant exposure of land surfaces to allow chemical weathering. Therefore, extreme snowball Earth conditions with a complete shutdown of the hydrological cycle do not seem to apply to the Gaskiers glaciation.  相似文献   
122.
The impact of modern cold glaciers on arid periglacial landscapes has received little attention compared with other glacial regimes, and there is a widely held assumption that cold glaciers are not effective geomorphological agents, despite recent studies to the contrary. This paper focuses on the processes operating at the margins of a number of glaciers in the Dry Valleys of Victoria Land, notably the Wright Lower Glacier. The glaciers are entraining primarily older drift deposits and highly weathered regolith which texturally are sandy gravels, as well as well‐sorted sands of fluvial origin. Despite basal temperatures of the order of ?16°C, frozen layers and blocks of sand and gravel are being incorporated into the base of the glaciers by folding and thrusting. The sedimentary products are ridges and aprons several metres high within which the principal lithofacies are sand, gravel, foliated glacier ice, lake ice and snow. These facies are glaciotectonized strongly. Draped over these landforms is a veneer of well‐sorted aeolian sand up to half a metre thick. Supraglacial streams flowing off the glaciers incise these landforms and the sediment is redeposited as alluvial fans, lake deltas and lake‐bottomset deposits. Overall the sediment/landform association differs markedly from those of other glacial regimes, with sand and gravel being the dominant facies, while the usual indicators of glacier working (such as facets and striations on clasts) are lacking. The preservation potential for these landforms on a thousand‐year time scale is high, as modification in this arid regime by slope processes and running water is limited. Sublimation of buried ice is so slow that ridge features are likely to remain ice‐cored almost indefinitely, modified only by wind transport and weathering.  相似文献   
123.
鄱阳湖湖滨地区广泛分布着晚第四纪风沙沉积序列。在星子县沙岭沙山进行野外调查后选择蓼花剖面开展工作,测试了地质时代和粒度,对粒度结果使用端元分析模型进行研究,探讨该区域末次冰期中晚期的气候变化规律。结果显示:该剖面由湖相-古土壤-沙丘砂等沉积相叠覆堆积组成,形成于末次冰期中晚期(48.8—17.1 ka)。端元分析模型将粒度数据分解出3个不同的粒度端元,不同端元组分在垂向上呈峰谷交替的旋回变化,EM1代表粉砂端元组分,峰值对应湖相和古土壤发育时期;EM2和EM3代表中砂—粗砂端元组分,峰值对应沙丘砂发育期,这些峰谷交替变化的规律指示了末次冰期的季风演变以及气候波动变化,万年尺度上表现为LH10 (48.8—39.9 ka)和LH3~LH5 (28.1—17.1 ka)的冬季风强盛期,分别对应深海氧同位素的MIS3b和MIS2阶段。LH6~LH9 (39.9—28.1 ka)为温暖的夏季风时期,对应深海氧同位素的MIS3a阶段。这些变化与YZ洞石笋氧同位素以及格陵兰冰心有良好的对应,与全球气候变化基本一致。  相似文献   
124.
We studied diatom assemblages and CaCO3 contents of methane-derived authigenic carbonates from the eastern margin of the Sea of Japan and assessed the formation time of these samples. Radioactive 14C date was determined in selected samples to obtain the maximum age of the time. The results of our study suggest mass formation of carbonate nodules in a glacial period within ∼40 ky, consistent with a published U/Th dating result of carbonate nodules in the study area. Diatom assemblages and contents in the carbonate nodules (abundance of ∼106/g, dominance of neritic-littoral species, warm/cold water species ratio lower than ∼25) differ from the near-seafloor sediments in the study area, which have characteristics of Holocene sediments in the Sea of Japan, and suggest cementation of glacial sediments. Laminated sediments in some nodule samples are glacial sediments because laminations are records of a low sea level period in the semi-enclosed ocean. Similarity of diatom assemblages and contents in all carbonate samples is another evidence of glacial sediments in nodules. Glacial sediments with oceanic cold water species as low as Holocene sediments restricts the sediment age to before 20 cal. ky BP. Carbonate contents higher than 78 wt% suggest the cementation of poorly compacted sediments near the seafloor, and the date of carbonate cementation is, therefore, close to that of the cemented sediments. Most carbonate nodule samples in this study were formed in a glacial period and detection of 14C restricts this period to within ∼40 ky.  相似文献   
125.
The Liard Lobe formed a part of the north‐eastern sector of the Cordilleran Ice Sheet and drained ice from accumulation areas in the Selwyn, Pelly, Cassiar and Skeena mountains. This study reconstructs the ice retreat pattern of the Liard Lobe during the last deglaciation from the glacial landform record that comprises glacial lineations and landforms of the meltwater system such as eskers, meltwater channels, perched deltas and outwash fans. The spatial distribution of these landforms defines the successive configurations of the ice sheet during the deglaciation. The Liard Lobe retreated to the west and south‐west across the Hyland Highland from its local Last Glacial Maximum position in the south‐eastern Mackenzie Mountains where it coalesced with the Laurentide Ice Sheet. Retreat across the Liard Lowland is evidenced by large esker complexes that stretch across the Liard Lowland cutting across the contemporary drainage network. Ice margin positions from the late stage of deglaciation are reconstructed locally at the foot of the Cassiar Mountains and further up‐valley in an eastern‐facing valley of the Cassiar Mountains. The presented landform record indicates that the deglaciation of the Liard Lobe was accomplished mainly by active ice retreat and that ice stagnation played a minor role in the deglaciation of this region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
126.
Fossils of forest habitat beetles and leaves of Nothofagus menziesii provide evidence of a forest refugium at times between ca. 34 000 and ca. 18 500 cal. a BP at an upland site in Howard Valley, located adjacent to glaciated valleys in South Island, New Zealand. The stratigraphy of the glacial‐aged terrace sequence of organic‐rich silts and fluvial sand/gravels indicates that soil development occurred episodically for around 15 000 a. Fifty‐four beetle taxa represent seven habitat types: forest, forest or scrub, riparian and aquatic, litter, grass/tussock, marshland and moss habitats. Leaf and beetle fossils indicate that forest dominated by N. menziesii persisted at the site for most of the time period represented, and tree line taxa such as Taenarthrus sp. 1 (Carabidae) and Podocarpus sp. (Podocarpaceae) indicate that the site may represent the upper tree limit for full‐glacial time. The finding of forest at this elevated site adds to the growing fossil evidence for multiple forest refugia in New Zealand during the last glaciation and is consistent with the pollen records, which have consistently indicated the presence of forest species during the last glaciations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
127.
We present a simple coupled glacier-sediment model to simulate the evolution of a tidewater glacier. The model is based on a consideration of the total mass budget of a glacier, whereas ice mechanics are fully parameterized. The calving rate at the glacier terminus is assumed to be proportional to the water depth. We show that the formation of a morainic shoal has a profound influence on the response of a tidewater glacier to climatic forcing. For a slow periodic forcing of the equilibrium-line altitude, the model glacier advances steadily into the estuary, builds up a submarine terminal moraine, and then retreats rapidly when a critical point is hit. For a slowly increasing equilibrium-line altitude, at a rate as low as 1 m per 5 years, we find terminus retreat rates of up to 10 km in 50 years. Our model suggests that, although the response of tidewater glaciers to external forcing is strongly nonlinear, the onset of retreat is controlled by climate change.  相似文献   
128.
We used the tropical oceanic planktonic diatom species Nitzschia marina, Rhizosolenia bergonii and Azpeitia africana/Azpeitia neocrenulata, most commonly found in the surface sediments of the northeasternmost South China Sea (SCS) where the Kuroshio Current enters the SCS through the Bashi Strait north of Luzon, to analyse the influence of the the Kuroshio Current on the SCS. The impact of the Kuroshio Current seems to be relatively strong during major warm periods and, to a lesser degree, in minor warm periods during the last 115 000 years. The strongest influence took place during the main part of the Holocene and during the very late phase of Marine Isotope Stage (MIS) 5e. It is possible to distinguish two magnitudes of change in the impact of the Kuroshio Current on the SCS: large changes occurred at shifts between glacial and interglacial conditions, while smaller changes seem to have recurred in both glacial and interglacial episodes as well as during the Holocene. Climatic/oceanographic changes and sea‐level variations were possibly the two most important mechanisms for the varying influences of the Kuroshio Current on the SCS. The interaction between the Kuroshio Current and monsoon‐related processes may also have played a role. However, because of restricted knowledge of the present‐day Kuroshio Current and the absence of a modern analogue to the ancient SCS due to the marked changes in palaeogeography, this relationship is difficult to establish. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
129.
We investigate late glacial and Holocene climate change recorded in Lake Baikal using the oxygen isotope composition of diatom silica (δ18ODIAT). Evaporation from the lake is minor, and the temperature fractionations of δ18O are unable to explain variations in the δ18ODIAT record alone. Isotopically, low meltwater input from glaciers may have some influence on δ18ODIAT, but the assumed periods of climatic warming and wastage do not coincide with large shifts in δ18ODIAT. There is a gradual oxygen isotope lowering from 27.0‰ to 20.6‰ over the late glacial, while, during the Holocene, δ18ODIAT values return to relatively high values. Previous studies of the modern oxygen and hydrogen isotope composition of Lake Baikal's inputs reveal that fluvial input to the lake's North Basin are isotopically lower than fluvial input from South Basin rivers. This north–south gradient of river δ18O and δD is mainly due to the greater input from isotopically low winter precipitation in the north and isotopically higher summer precipitation in the south. As a result, the δ18ODIAT record from Lake Baikal can at least in part be explained by varying input from these sources related to seasonal changes in precipitation. Changes in atmospheric conditions may have a role in altering seasonality and the distribution of precipitation over Lake Baikal's catchment. A feedback mechanism is well known linking higher Eurasian spring snow cover extent (ESSC) to the development of anticyclonic conditions and low precipitation the following summer in the areas south of Lake Baikal. A simultaneous increase in the importance of depleted water (snowmelt) input from the north and decreased enriched summer precipitation in the south is needed to explain depletions in δ18O of lake water and subsequently δ18ODIAT during colder periods. The opposite of this situation is required to enrich lake water during warmer periods. The analysis of δ18O from diatom silica is a useful proxy for environmental change, especially in lakes, like Lake Baikal, where carbonates are absent or diluted. However, analysis must be based on near pure diatom samples as even trace amounts of silt can have a dominating effect on δ18ODIAT values.  相似文献   
130.
The glacial geomorphology of the Waterville Plateau (ca. 55 km2) provides information on the dynamics of the Okanogan Lobe, southern sector of the Cordilleran Ice Sheet in north‐central Washington. The Okanogan Lobe had a profound influence on the landscape. It diverted meltwater and floodwater along the ice front contributing to the Channeled Scabland features during the late Wisconsin (Fraser Glaciation). The glacial imprint may record surge behaviour of the former Okanogan Lobe based on a comparison with other glacial landsystems. Conditions that may have promoted instability include regional topographic constraints, ice marginal lakes and dynamics of the subglacial hydrological system, which probably included a subglacial reservoir. The ice‐surface morphology and estimated driving stresses (17–26 kPa) implied from ice thickness and surface slope reconstructed in the terminal area also suggest fast basal flow characteristics. This work identifies the location of a fast flowing ice corridor and this probably affected the stability and mass balance of the south‐central portion of the Cordilleran Ice Sheet. Evidence for fast ice flow is lacking in the main Okanogan River Valley, probably because it was destroyed during deglaciation by various glacial and fluvial processes. The only signature of fast ice flow left is the imprint on the Waterville Plateau. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号