首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1247篇
  免费   44篇
  国内免费   141篇
测绘学   64篇
大气科学   110篇
地球物理   51篇
地质学   149篇
海洋学   32篇
天文学   972篇
综合类   17篇
自然地理   37篇
  2024年   3篇
  2023年   7篇
  2022年   16篇
  2021年   22篇
  2020年   17篇
  2019年   22篇
  2018年   12篇
  2017年   14篇
  2016年   6篇
  2015年   15篇
  2014年   21篇
  2013年   31篇
  2012年   32篇
  2011年   24篇
  2010年   30篇
  2009年   108篇
  2008年   101篇
  2007年   116篇
  2006年   131篇
  2005年   114篇
  2004年   92篇
  2003年   94篇
  2002年   85篇
  2001年   92篇
  2000年   71篇
  1999年   45篇
  1998年   78篇
  1997年   1篇
  1996年   5篇
  1995年   6篇
  1994年   7篇
  1993年   5篇
  1992年   2篇
  1991年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有1432条查询结果,搜索用时 15 毫秒
991.
N -body simulations are an important tool in the study of formation of large-scale structures. Much of the progress in understanding the physics of galaxy clustering and comparison with observations would not have been possible without N -body simulations. Given the importance of this tool, it is essential to understand its limitations as ignoring these can easily lead to interesting but unreliable results. In this paper, we study the limitations due to the finite size of the simulation volume. In an earlier work, we proposed a formalism for estimating the effects of a finite box size on physical quantities and applied it to estimate the effect on the amplitude of clustering, mass function. Here, we extend the same analysis and estimate the effect on skewness and kurtosis in the perturbative regime. We also test the analytical predictions from the earlier work as well as those presented in this paper. We find good agreement between the analytical models and simulations for the two-point correlation function and skewness. We also discuss the effect of a finite box size on relative velocity statistics and find the effects for these quantities scale in a manner that retains the dependence on the averaged correlation function     .  相似文献   
992.
993.
994.
We investigate the impact of neutral hydrogen (H  i ) in galaxies on the statistics of 21-cm fluctuations using seminumerical modelling. Following the reionization of hydrogen, the H  i content of the Universe is dominated by damped absorption systems (DLAs), with a cosmic density in H  i that is observed to be constant at a level equal to ∼2 per cent of the cosmic baryon density from   z ∼ 1  to   z ∼ 5  . We show that extrapolation of this constant fraction into the reionization epoch results in a reduction in the amplitude of 21-cm fluctuations over a range of spatial scales. We further find that consideration of H  i in galaxies/DLAs reduces the prominence of the H  ii region induced shoulder in the 21-cm power spectrum (PS), and hence modifies the scale dependence of 21-cm fluctuations. We also estimate the 21-cm–galaxy cross PS and show that the cross PS changes sign on scales corresponding to the H  ii regions. From consideration of the sensitivity for forthcoming low-frequency arrays, we find that the effects of H  i in galaxies/DLAs on the statistics of 21-cm fluctuations will be significant with respect to the precision of a PS or cross PS measurement. In addition, since overdense regions are reionized first we demonstrate that the cross-correlation between galaxies and 21-cm emission changes sign at the end of the reionization era, providing an alternative avenue to pinpoint the end of reionization. The sum of our analysis indicates that the H  i content of the galaxies that reionize the universe will need to be considered in detailed modelling of the 21-cm intensity PS in order to correctly interpret measurements from forthcoming low-frequency arrays.  相似文献   
995.
The weak lensing power spectrum carries cosmological information via its dependence on the growth of structure and on geometric factors. Since much of the cosmological information comes from scales affected by non-linear clustering, measurements of the lensing power spectrum can be degraded by non-Gaussian covariances. Recently, there have been conflicting studies about the level of this degradation. We use the halo model to estimate it and include new contributions related to the finite size of lensing surveys, following Rimes and Hamilton's study of three-dimensional simulations. We find that non-Gaussian correlations between different multipoles can degrade the cumulative signal-to-noise ratio (S/N) for the power spectrum amplitude by up to a factor of 2 (or 5 for a worst-case model that exceeds current N -body simulation predictions). However, using an eight-parameter Fisher analysis, we find that the marginalized errors on individual parameters are degraded by less than 10 per cent (or 20 per cent for the worst-case model). The smaller degradation in parameter accuracy is primarily because: individual parameters in a high-dimensional parameter space are degraded much less than the volume of the full Fisher ellipsoid; lensing involves projections along the line of sight, which reduce the non-Gaussian effect; some of the cosmological information comes from geometric factors which are not degraded at all. We contrast our findings with those of Lee and Pen who suggested a much larger degradation in information content. Finally, our results give a useful guide for exploring survey design by giving the cosmological information returns for varying survey area, depth and the level of some systematic errors.  相似文献   
996.
997.
998.
Using large numbers of simulations of the microwave sky, incorporating the cosmic microwave background (CMB) and the Sunyaev–Zel'dovich (SZ) effect due to clusters, we investigate the statistics of the power spectrum at microwave frequencies between spherical multipoles of 1000 and 10 000. From these virtual sky maps, we find that the spectrum of the SZ effect has a larger standard deviation by a factor of 3 than would be expected from purely Gaussian realizations, and has a distribution that is significantly skewed towards higher values, especially when small map sizes are used. The standard deviation is also increased by around 10 per cent compared to the trispectrum calculation due to the clustering of galaxy clusters. We also consider the effects of including residual point sources and uncertainties in the gas physics. This has implications for the excess power measured in the CMB power spectrum by the Cosmic Background Imager (CBI) and Berkeley–Illinois–Maryland Association (BIMA) experiments. Our results indicate that the observed excess could be explained using a lower value of σ8 than previously suggested, however the effect is not enough to match  σ8= 0.825  . The uncertainties in the gas physics could also play a substantial role. We have made our maps of the SZ effect available online.  相似文献   
999.
We discuss the performance characteristics of using the modification of the tree code suggested by Barnes in the context of the TreePM code. The optimization involves identifying groups of particles and using only one tree walk to compute the force for all the particles in the group. This modification has been in use in our implementation of the TreePM code for some time, and has also been used by others in codes that make use of tree structures. We present the first detailed study of the performance characteristics of this optimization. We show that the modification, if tuned properly, can speed up the TreePM code by a significant amount. We also combine this modification with the use of individual time steps and indicate how to combine these two schemes in an optimal fashion. We find that the combination is at least a factor of two faster than the modified TreePM without individual time steps. Overall performance is often faster by a larger factor because the scheme for the groups optimizes the use of cache for large simulations.  相似文献   
1000.
Anomalies in the solar magnetic fields of various scales are studied. The polar magnetic field strength is shown to have decreased steadily during the last three solar cycles. This is because the increase in the dipole magnetic moment observed from 1915 to 1976 has changed into a decrease in the last three cycles. At the same time, the medium scale magnetic fields (like those of isolated coronal holes) have been unusually strong in the last cycle. As a result, the tilt of the heliospheric current sheet is still about 30°. The large effective contribution from the medium scale fields to the total energy of the large-scale fields is also confirmed by our calculations of the effective multipolarity index. The aa-index at the cycle minima is correlated with the height of the succeeding maxima. The set of data considered may be indicative of the possible approach of a sequence of low solar cycles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号