首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   417篇
  免费   87篇
  国内免费   136篇
测绘学   1篇
大气科学   1篇
地球物理   70篇
地质学   511篇
海洋学   18篇
综合类   9篇
自然地理   30篇
  2024年   1篇
  2023年   3篇
  2022年   14篇
  2021年   13篇
  2020年   18篇
  2019年   20篇
  2018年   22篇
  2017年   28篇
  2016年   25篇
  2015年   17篇
  2014年   24篇
  2013年   35篇
  2012年   24篇
  2011年   20篇
  2010年   9篇
  2009年   27篇
  2008年   27篇
  2007年   35篇
  2006年   16篇
  2005年   22篇
  2004年   23篇
  2003年   16篇
  2002年   9篇
  2001年   17篇
  2000年   25篇
  1999年   21篇
  1998年   21篇
  1997年   15篇
  1996年   9篇
  1995年   10篇
  1994年   16篇
  1993年   10篇
  1992年   10篇
  1991年   11篇
  1990年   4篇
  1989年   3篇
  1988年   8篇
  1987年   4篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1981年   2篇
  1976年   1篇
排序方式: 共有640条查询结果,搜索用时 15 毫秒
51.
A novel conceptual model of the mechanics of sands is developed within an elastic–plastic framework. Central to this model is the realization that volume changes in anisotropic granular materials occur as a result of two fundamentally different mechanisms. The first is purely kinematic, dilative, and is the result of the changes in anisotropic fabric. There is also a second volume change in granular media that occurs as a direct response to changes in stress as in a standard elastic/plastic continuum. The inclusion of the two sources of volume change results in three important datum states. When subjected to isotropic strains, the resulting stress state in granular materials is not isotropic but lies upon the kinematic normal consolidation line. There exists a state at which the fabric‐induced volumetric strain rate becomes equal to the stress‐induced volumetric strain rate making the total plastic volumetric strain rate equal to zero. Granular response changes from contractive to dilative at this phase transformation line. The third datum state is the one in which the stress‐induced volumetric strain rate is zero. The sand, however, continues to dilate at this state with the difference between stress and dilation ratio a constant as predicted by Taylor's stress–dilatancy rule. These predictions are shown in accordance with experimental data from a series of drained tests and undrained on Ottawa sand. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
52.
原花山群分布于紧邻南秦岭的扬子陆块北缘大洪山地区,出露于重要的构造部位,是研究其形成时期扬子陆块构造演化及其与南秦岭关系的重要载体,其物质组成、形成时代和构造属性长期存在争论。本文将原花山群解体为花山构造混杂岩和正常的火山—沉积地层(本文所指花山群)两部分来讨论。笔者重新厘定了花山群的沉积时限,有针对性地对有构造背景争议的花山群进行玄武岩地球化学研究,对有时代争议的混杂岩进行锆石U-Pb年代学研究。年代学、地球化学和沉积学综合研究表明,花山群的沉积时限为ca. 830 Ma至ca. 800 Ma,形成于与Rodinia超大陆裂解有关的陆内裂谷盆地。花山构造混杂岩带可能不只是晋宁期的缝合带,而是具有多期物质组成、经历了多期构造叠加的复合型缝合带。结合他人成果,我们提出了扬子陆块与南秦岭从新元古代到早古生代的构造演化新模式。  相似文献   
53.
大规模伸展构造是华北克拉通东部岩石圈减薄的重要表现形式。部分低角度韧性剪切带是地壳伸展变形后所展现的构造形式。本文研究了王格庄韧性剪切带的岩石学、几何学、运动学等特征显示:韧性剪切带走向近南北向,剪切带断层面倾向多变(倾向西、西南、西北方向)。大部分区域面理低角度倾向西,矿物拉伸线理近东西向,不对称旋转碎斑及S-C组构指示顶端指向西的剪切特征。结合研究区西侧与伸展构造相匹配的半地堑伸展盆地证据:本研究认为伸展构造的形成可能与西太平洋板块的后撤相关,即大规模伸展构造作用引发了华北克拉通东部的地壳减薄作用。  相似文献   
54.
东昆仑造山带东段哈图沟–清水泉–沟里韧性剪切带记录了多个旋回的造山作用,本文通过对韧性剪切带中石英c轴组构和显微构造特征测试分析,探讨东昆仑造山带东段陆块间俯冲拼合及地壳伸展减薄的形成机制。结果显示,韧性剪切带变形温度介于380~650℃之间,形成环境为中–高绿片岩相到低角闪岩相,剪切带内差异应力值介于173~509 MPa之间,应变速率介于6.93×10–14~1.43×10–8 s–1之间,主体为10–11~10–10 s–1,显示韧性剪切带变形是快速俯冲作用下的产物,越靠近东昆仑造山带东段东昆中断裂带其变形温度、差异应力值及相应的应变速率值越大,表明东昆仑造山带东段韧性剪切变形中心为东昆中断裂带。利用不同方法所计算出的韧性剪切带运动学涡度值,显示韧性剪切带早期瞬时运动学涡度(0.56~1)对应于东昆仑造山带东段东昆南与东昆仑造山带东段东昆北陆块间俯冲的初始阶段,中后期运动学涡度(0.25~0.91)应当对应于东昆南与东昆北陆块间的俯冲碰撞阶段,最晚期的C′瞬时运动学涡度(0.19~0.51)则对应于后造山的伸展阶段。通过石英c轴组构结合其宏微观构造特征,认为东昆中构造带至少经历了3个期次的构造运动,分别为加里东晚期的逆冲兼左行走滑剪切作用、晚海西–印支期的逆冲兼右行走滑剪切作用和燕山早期及之后的脆韧性–脆性的左行走滑剪切作用。  相似文献   
55.
Many concepts and interpretations on the formation of the Franciscan mélange have been proposed on the basis of exposures at San Simeon, California. In this paper, we show the distribution of chaotic rocks, their internal structures and textures, and the interrelationship between the chaotic rocks and the surrounding sandstones (turbidites). Mélange components, particularly blueschists, oceanic rocks, including greenstone, pillow lava, bedded chert, limestone, sandstone, and conglomerate, have all been brecciated by retrograde deformation. The Cambria Slab, long interpreted as a trench slope basin, is also strongly deformed by fluidization, brecciation, isoclinal folding, and thrusting, leading us to a new interpretation that turbiditic rocks (including the Cambria Slab) represent trench deposits rather than slope basin sediments. These rocks form an accretionary prism above mélanges that were diapirically emplaced into these rocks first along sinistral-thrust faults, and then along dextral-normal faults. Riedel shear systems are observed in several orders of scale in both stages. Although the exhumation of the blueschist blocks is still controversial, the common extensional fractures and brecciation in most of the blocks in the mélanges and further mixture of various lithologies into one block with mélange muddy matrix indicate that once deeply buried blocks were exhumed from considerable depths to the accretionary prism body, before being diapirically intruded with their host mélange along thrust and normal faults, during which retrograde deformation occurred together with retrograde metamorphism. Recent similar examples of high-pressure rock exhumation have been documented along the Sofugan Tectonic Line in the Izu forearc areas, in the Mineoka belt in the Boso Peninsula, and as part of accretionary prism development in the Nankai and Sagami troughs of Japan. These modern analogues provide actively forming examples of the lithological and deformational features that characterize the Franciscan mélange processes.  相似文献   
56.
Mélanges occur as discontinuous, mappable, units along an extensive N–S-trending, steeply dipping zone of distributed shear in metamorphic complexes along the coast of central Chile. Large mélange zones, from north to south, near Chañaral, Los Vilos, Pichilemu, and Chiloé Island, contain variations in lithologic and structural detail, but are consistent in exhibiting cross-cutting fabric features indicating a progressive transition from earlier ductile to more brittle deformation. In the Infiernillo mélange near Pichilemu, Permian to Early Triassic, sub-horizontal schistosity planes of the Western Series schist are disrupted, incorporated into, and uplifted along high-angle, N–S- to NNE–SSW-trending brittle–ductile shears. Mylonitic and cataclastic zones within the mélange matrix indicate active lateral shear during cumulative exhumation from depths exceeding 12 km in some areas. Exotic lithologies, such as Carboniferous mafic amphibolite and blueschist, formed during earlier Gondwanide subduction, match well with similar rocks in the Bahia Mansa to Los Pabilos region 750 km to the south, suggesting possible dextral offset. The development of the Middle to Late Triassic, N–S=trending, near-vertical shear zones formed weaknesses in the crust facilitating later fault localization, gravitational collapse, and subduction erosion along the continental margin. The length and linearity of this zone of lateral movement, coincident with a general hiatus of regional arc magmatism during the Middle to Late Triassic, is consistent with large-scale dextral transpression, or possible transform movement, during highly oblique NNE–SSW convergence along the pre-Andean (Gondwana) margin. The resultant margin parallel N–S-trending shear planes may be exploited by seismically active faults along the present coastal area of Chile. The palaeo-tectonic setting during the transitional period between earlier Gondwanide (Devonian to Permian) and later Andean (Late Jurassic to present) subduction may have had some similarity to the presently active San Andreas transform system of California.  相似文献   
57.
An elastoplastic constitutive model is proposed for saturated sands in general stress space using the middle surface concept (MSC). In MSC, different features of stress–strain response of a material are divided into different pseudo‐yield surfaces. The true‐yield surface representing the true response is established by using various links between the yield surfaces. In this MSC sand model, several well‐known features of sand response are represented by three different pseudo‐yield surfaces, which are developed in a simple and straightforward way. These features include the critical state behaviour, the effects of state parameter, unloading and reloading plastic deformation, the influence of fabric anisotropy, and phase transformation line related behaviour. Finally, the model predictions and test results are compared for two different types of sands under a variety of loading conditions and good comparisons are obtained. The application of MSC to saturated sand modelling shows the versatility of MSC as a general concept for modelling stress–strain response of materials. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
58.
Given a set of nondirectional orientation data (fold axes, lineations, dip and dip direction of bedding, universal stage readings of crystallographic axes, etc.),the best-fit line (point maximum),plane (great circle),or cone (small circle)can be determined by minimizing the sum of the squares of the angular residuals using a simplex convergence technique. Stereoplots of the angular deviation over the complete lower hemisphere for these distributions may also be generated when consideration of the constraint on the best-fit position is important; for example in comparing different data sets of the same structural element. The routines are available as a FORTRAN coded computer program.  相似文献   
59.
岩石的应变组构型式与岩石成分、变形环境和应变过程有着密切关系。北瓦沟地区低角闪岩相条作下的长英质岩石,表现脆性、韧性和韧脆性过渡,因而在剪切作用过程中形成了相应的应变组构型式,即脆性应变组构、韧性应变组构和脆-韧性应变组构。而且随着应变过程的发展,应变组构也表现出一定的演化规律。  相似文献   
60.
The Concón Mafic Dike Swarm (CMDS) consists of basaltic to andesitic dikes emplaced into deformed Late Paleozoic granitoids during the development of the Jurassic arc of central Chile. The dikes are divided into an early group of thick dikes (5–12 m) and a late group of thin dikes (0.5–3 m). Two new amphibole 40Ar/39Ar dates obtained from undeformed and deformed dikes, constrain the age of emplacement and deformation of the CMDS between 163 and 157 Ma. Based on radiometric ages, field observations, AMS studies and petrographic data, we conclude that the emplacement of the CMDS was syntectonic with the Jurassic arc extension and associated with sinistral displacements along the NW-trending structures that host the CMDS. The common occurrence of already deformed and rotated xenoliths in the dikes indicates that deformation in the granitoids started previously.The early thick dikes and country rocks appear to have been remagnetized during the exhumation of deep-seated coastal rocks in the Early Cretaceous (around 100 Ma). The remanent magnetization in late thin dikes is mainly retained by small amounts of low-Ti magnetite at high temperature and pyrrhotite at low temperature. The magnetization in these dikes appears to be primary in origin. Paleomagnetic results from the thin dikes also indicate that the whole area was tilted  23° to the NNW during cooling of the CMDS.The NNW–SSE extension vectors deduced from the paleomagnetic data and internal fabric of dikes are different with respect to extension direction deduced for the Middle–Late Jurassic of northern Chile, pointing to major heterogeneities along the margin of the overriding plate during the Mesozoic or differences in the mechanisms driving extension during such period.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号