首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5118篇
  免费   782篇
  国内免费   791篇
测绘学   31篇
大气科学   214篇
地球物理   243篇
地质学   3214篇
海洋学   219篇
天文学   2304篇
综合类   201篇
自然地理   265篇
  2024年   16篇
  2023年   43篇
  2022年   109篇
  2021年   116篇
  2020年   116篇
  2019年   147篇
  2018年   112篇
  2017年   132篇
  2016年   132篇
  2015年   150篇
  2014年   207篇
  2013年   199篇
  2012年   233篇
  2011年   241篇
  2010年   206篇
  2009年   427篇
  2008年   344篇
  2007年   440篇
  2006年   412篇
  2005年   400篇
  2004年   366篇
  2003年   356篇
  2002年   298篇
  2001年   252篇
  2000年   228篇
  1999年   201篇
  1998年   206篇
  1997年   105篇
  1996年   62篇
  1995年   81篇
  1994年   63篇
  1993年   64篇
  1992年   63篇
  1991年   33篇
  1990年   31篇
  1989年   44篇
  1988年   20篇
  1987年   13篇
  1986年   11篇
  1985年   3篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1954年   1篇
排序方式: 共有6691条查询结果,搜索用时 774 毫秒
871.
深化含油气沉积盆地的压力结构研究,厘清异常压力的空间展布,对划分含油气系统、评价有利输导体系与明确勘探甜点区带具有重要的理论和实践意义。为深化渤海湾盆地富油凹陷的油气二次勘探,本文以歧口凹陷为研究对象,对其压力结构进行重点刻画。在实测地层压力的校正下,综合单井、连井和二维地震地层压力结构分析,厘清了歧口凹陷的压力结构特征,识别出4类纵向压力结构:①单超压带结构;②双超压带结构;③多超压带结构;④静水压力结构。纵向上,歧口地区存在3类纵向压力系统样式——单超压系统、双超压系统、静水常压系统。双超压系统是歧口凹陷的主要压力系统样式,广泛发育于主凹和各大次凹;从凹陷中心向盆地边缘,双超压系统逐渐向单超压系统、静水常压系统过渡。单超压系统主要分布于盆地边缘的斜坡和潜山区,如歧北高斜坡、羊三木-扣村潜山等。静水常压系统则主要分布在离深凹区更远的沈青庄潜山和埕北斜坡区域。上部超压系统和下部超压系统的顶板分别位于东营组和沙三段内部,侧向上受盆地边缘和深大断裂控制。上部超压系统的形成主要受欠压实作用控制,以歧口主凹为中心呈环带分布;而下部超压系统的形成主要受生烃作用控制,以主凹和几大次凹为中心分布。未来,下部超压系统中保存的天然气将成为歧口地区超深层天然气勘探的重点对象。  相似文献   
872.
通过野外地质调查及室内综合研究,分析了关中盆地浅层地热能的开发利用情况、赋存特征和形成模式,并对资源量进行了估算,总结了盆地不同地貌单元、不同岩性的岩土体热物性参数特征,计算了区域恒温带深度和浅层大地热流值。关中盆地地热能的形成模式主要为热传导型和热对流型: 热传导型地热资源主要分布于西安凹陷、固市凹陷等完整地质块体内; 热对流型地热资源主要分布于深大断裂直接沟通地表的区域以及断裂带周边区域。采用层次分析法对关中盆地浅层地热能进行适宜性分区,认为关中盆地整体属于地埋管地源热泵系统适宜区或较适宜区,地下水地源热泵系统适宜区和较适宜区主要分布在盆地中部漫滩区和阶地区。利用热储法,计算关中盆地浅层地热能热容量为1.38×1016 kJ/℃,浅层地热能储量巨大,开发利用前景优良。  相似文献   
873.
杜尚泽  张元厚  杨万志  文斌  王鹏 《矿床地质》2020,39(6):1103-1121
东天山觉罗塔格构造带中康古尔金矿因其独特的成矿地质特征,成因一直备受争议。文章立足于康古尔金矿地质特征,结合前人的研究资料,通过探讨觉罗塔格带的构造演化,重新审视康古尔金矿的成因。笔者总结了觉罗塔格构造带晚古生代地层时代及火山-沉积建造特征,认为晚古生代早期大洋板块向北俯冲,发育奥陶纪-泥盆纪弧火山岩及火山-沉积岩系,石炭纪康古尔洋发生双向洋-陆俯冲,在两侧形成对称岛弧带,局部平稳拉张环境为铜-铅-锌-金成矿的有利环境。野外地质观察及室内研究结果表明其成因不仅仅与韧性剪切作用有关。康古尔金矿体位于海相安山岩、凝灰岩的交替部位,上部富金-中部铅锌-下部富铜的金属分带特征,与VMS矿床特征一致。矿体呈板状且与围岩截然接触,明显受挤压变形的网脉状矿化表明矿体形成早于韧性剪切作用。矿床地球化学特征表明,康古尔金矿成矿作用具有多期多阶段性。通过详细对比康古尔金矿和造山型金矿、小热泉子VMS铜矿的特征,笔者认为康古尔金矿具有原生VMS矿床的特征,并且被二叠纪韧性变形所改造,为喷流沉积-变质热液改造型富金多金属矿床。  相似文献   
874.
2020年3月30日,四川省凉山州西昌市经久乡发生森林大火,山火燃烧后形成的山火灰和烧焦土体在强降雨作用下极易启动形成泥石流,给西昌市泸山、琼海景区生态环境及当地百姓生命财产安全带来潜在地质灾害风险。以西昌市安哈镇响水沟左岸3#支沟为例,采用野外调查、无人机航拍、地球物理探测、现场及室内实验等手段,对2020年5月1日该沟发生的火后泥石流流体特征、动力学参数及成因机制等开展研究,系统分析了山火及降雨过程对该次火后泥石流形成的影响机制。该成果可为系统认识西昌泸山“3·30”山火地区火后泥石流的运动特征、物源规模、激发雨量及其发展趋势研判提供科学参考。  相似文献   
875.
以辽宁瓦房店金刚石矿床50号岩管为例,系统分析了该矿床的地质特征。通过对斑状富金云母金伯利岩、含围岩角砾斑状金伯利岩和金伯利凝灰角砾岩进行岩石地球化学分析发现: 碳酸盐化金伯利凝灰角砾岩超基性成分较少,滑石化、蛇纹石化及碳酸盐化混合金伯利凝灰角砾岩超基性成分较多; 铬、镍、钛在金伯利凝灰角砾岩中的含量较低,在含围岩角砾斑状金云母金伯利岩中的含量略高,在斑状富金云母金伯利岩和斑状金伯利岩中的含量最高。该矿床主要为含围岩角砾斑状金伯利岩和斑状富金云母金伯利岩,其次为金伯利凝灰角砾岩、含围岩角砾斑状金云母金伯利岩和含金伯利物质角砾岩。含铬镁铝榴石、铬铁矿和碳硅石是金刚石的伴生矿物。水平方向上,金伯利岩含矿品位西部较富,东部较贫; 垂直方向上,金伯利岩含矿品位变化较小。通过三维建模,推测50号岩管不是根部相,而是受EW向推覆构造作用影响发生的断层错位,在其东侧600 m深处存在50-1号金伯利岩体。  相似文献   
876.
山东临清地热田地热地质特征   总被引:3,自引:2,他引:1       下载免费PDF全文
杨德平 《山东国土资源》2005,21(8):27-31,43
山东省临清地热田主体位于冠县凹陷内,面积约1550km2。地热类型属层状孔隙型,热源是地球内部的传导热,盖层是第四系和新近纪明化镇组。可被利用的热储层有4个,最有开发利用价值的是馆陶组下段热储,该热储层顶板埋深约1100m,底板埋深约1700m,热储层厚度530~580m,含水层累积厚度158~175m,单井涌水量1500~2000m3/d,出口水温62~67℃,矿化度5000mg/L左右,具腐蚀性,结垢性弱,具较好的开发利用价值。经计算馆陶组热储层单井1a的可采量为5.431×105m3,100a可采量所释放的总热量为1.156×1013kJ,合理井距为1500m。  相似文献   
877.
1 Introduction Debris flows in Southeast Tibet can carry a great deal of sediment into streams in a special way. They block mainstreams and form dams.This type of dam,not only dominates the interaction between water and sediment and changes in the riverbed, but also exerts a great influence on the ability of transportation of the river. When a debris-flow dam forms, the water level behind the dam will increase, and villages, fields and roads will beflooded.When the dam breakes,the resulting …  相似文献   
878.
通过典型水文钻孔和露头剖面沉积地质、水文地质调查、样品测试及综合研究表明,鄂尔多斯盆地白垩系含水层形成时,北部环河组、洛河组均广泛发育河流相沉积,而南部环河组湖泊相为主、洛河组沙漠沙丘相广泛分布的沉积古地理格局,这对含水岩石中长石、粘土矿物、方解石、石膏等重要矿物组成和易溶盐含量及其空间分布形成明显控制,也控制了含水层和隔水层空间分布,并显著影响了深层地下水循环交替条件的区域分布变化。在沉积-成岩环境条件下,影响地下水水化学场形成和水质分布变化的主要水-岩作用包括硫酸盐、碳酸盐及硅酸盐矿物的溶解溶滤和阳离子交换作用等水文地球化学作用。受含水层沉积岩相古地理、地下水循环及水岩作用等因素控制,环河组、洛河组地下水总体表现为盆地北区TDS低、淡水发育、以HCO3型为主,南区TDS高、微咸水和咸水发育、以HCO3.SO4型为主的分布规律,地下水水化学和水质分布在北区分布变化小、在南区上下含水层分布变化复杂。  相似文献   
879.
The lithological features, the types of organic matter and its occurrence and carbon and oxygen isotopic value were clarified by combining core observation, thin slice authentication, X ray diffraction analysis, kerogen type identification and carbon and oxygen isotope analysis. The characteristic of strata, the distribution of volcanoes of Junggar Basin were also taken into consideration. A comprehensive analysis was conducted to evaluate environmental response of volcanism in Lucaogou formation in Jimsar sag. The results show that rocks is a mixed sedimentation of effusive rock and carbonate rocks, volcanic materials is widely developed in Lucaogou formation and origins from the edge of sag or distant source volcano activity. Organic matter is predominantly unstructural algae and asphaltene. The carbon isotopic value of carbonates ranges between 6.8‰ and 9.7‰ with an average of 8.3‰, featured in high positive excursions, while oxygen isotopic value varies from -11.9‰ to -4.3‰ with an average of -6.2‰. During the period of volcanic activity, the volcanic material released high amounts of nutrient to the lake basin, which is beneficial to the algae and other organic organisms. In the poor oxygen and calm water environments, the organic matter is distributed in the laminar algal and the carbon isotope value is high positive drift. During the intermittent period of volcanic activity, the lake level decreased and the lake bottom water changed to the oxygen-enriched environments. The organic matter is locally enriched or dispersed in local layers, and the carbon isotope values decreased slightly. The frequent volcanic activity promoted the organism boom, which lead carbon isotope value to have high positive characteristics and change trends.  相似文献   
880.
In the Cleaverville area of Western Australia, the Regal, Dixon Island, and Cleaverville Formations preserve a Mesoarchean lower‐greenschist‐facies volcano‐sedimentary succession in the coastal Pilbara Terrane. These formations are distributed in a rhomboidal‐shaped area and are unconformably overlain by two narrowly distributed shallow‐marine sedimentary sequences: the Sixty‐Six Hill and Forty‐Four Hill Members of the Lizard Hills Formation. The former member is preserved within the core of the Cleaverville Syncline and the latter formed along the northeast‐trending Eighty‐Seven Fault. Based on the metamorphic grade and structures, two deformation events are recognized: D1 resulted in folding caused by a collisional event, and D2 resulted in regional sinistral strike‐slip deformation. A previous study reported that the Cleaverville Formation was deposited at 3020 Ma, after the Prinsep Orogeny (3070–3050 Ma). Our SHRIMP U–Pb zircon ages show that: (i) graded volcaniclastic–felsic tuff within the black shale sequence below the banded iron formation in the Cleaverville Formation yields an age of (3 114 ±14) Ma; (ii) the youngest zircons in sandstones of the Sixty‐Six Hill Member, which unconformably overlies pillow basalt of the Regal Formation, yield ages of 3090–3060 Ma; and (iii) zircons in sandstones of the Forty‐Four Hill Member show two age peaks at 3270 Ma and 3020 Ma. In this way, the Cleaverville Formation was deposited at 3114–3060 Ma and was deformed at 3070–3050 Ma (D1). Depositional age of the Cleaverville Formation is at least 40–90 Myr older than that proposed in previous studies and pre‐dates the Prinsep Orogeny (3070–3050 Ma). After 3020 Ma, D2 resulted in the formation of a regional strike‐slip pull‐apart basin in the Cleaverville area. The lower‐greenschist‐facies volcano‐sedimentary rocks are distributed only within this basin structure. This strike‐slip deformation was synchronous with crustal‐scale sinistral shear deformation (3000–2930 Ma) in the Pilbara region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号