首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2269篇
  免费   474篇
  国内免费   1109篇
测绘学   26篇
大气科学   80篇
地球物理   245篇
地质学   2853篇
海洋学   304篇
天文学   8篇
综合类   190篇
自然地理   146篇
  2024年   22篇
  2023年   63篇
  2022年   82篇
  2021年   116篇
  2020年   107篇
  2019年   139篇
  2018年   105篇
  2017年   110篇
  2016年   132篇
  2015年   117篇
  2014年   234篇
  2013年   210篇
  2012年   215篇
  2011年   191篇
  2010年   168篇
  2009年   151篇
  2008年   162篇
  2007年   153篇
  2006年   155篇
  2005年   132篇
  2004年   103篇
  2003年   101篇
  2002年   85篇
  2001年   80篇
  2000年   95篇
  1999年   97篇
  1998年   59篇
  1997年   86篇
  1996年   49篇
  1995年   42篇
  1994年   35篇
  1993年   49篇
  1992年   33篇
  1991年   26篇
  1990年   35篇
  1989年   27篇
  1988年   21篇
  1987年   19篇
  1986年   13篇
  1985年   12篇
  1984年   7篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1978年   6篇
  1977年   1篇
排序方式: 共有3852条查询结果,搜索用时 15 毫秒
11.
This study takes cognizance of the fact that the TIOMIN (TIOMIN Resources Inc. of Canada) project has resulted in controversy over its handling of environmental issues and especially the Environmental Impact Assessment (EIA). The authors address many of the protracted issues that have slowed the development of the mining project in Kwale. The main emphasis is on the impacts of the mining and mineral separation processes on the environment, including the governing legislation, the role of consultation and public participation, and socioeconomic issues. In their public documents TIOMIN has specified neither the type of minerals it wants to extract from the area nor their chemical composition. It is well known, however that the titanium minerals and zircon targeted have impurities of iron, thorium and uranium. In the absence of an Environmental Management Plan, the effects of stockpiling radioactive wastes and other impurities that could possibly lead to environmental degradation in both the terrestrial and marine environments have not been publically addressed. The measures proposed to mitigate ecological damage as a result of the establishment of a minerals processing plant in the area seem inadequate. Pollution resulting from accidental spillage or breakage could have significant impact on marine life and residents living near the mining site. Other issues that have not been addressed satisfactorily pertain to the use of surface and underground water. The area already faces a huge water deficit and the calculations presented on aquifer recharge and stream flow rates do not indicate the large quantities of water that would be required in the mineral processing plant. The project, if approved in its present state, risks violation of international conventions. Furthermore, it could cause a conflict between Kenya and Tanzania in the event of an oil spill at the proposed ship loading facility at Shimoni. The proposed mining area includes the district's most fertile land, is home to many fisherfolk and is a major tourist destination. An analysis of the effects of this project on other available opportunities must be thoroughly understood to ascertain the economic and environmental benefits and costs of the mining venture. The proposed compensation rate of $1,000 per acre, for resettlement for example, appears to be grossly inadequate. Compensation should take into account family size and structure family assets and the cost of relocation.  相似文献   
12.
The phytoplankton community in the western subarctic Pacific (WSP) is composed mostly of pico- and nanophytoplankton. Chlorophyll a (Chl a) in the <2 μm size fraction accounted for more than half of the total Chl a in all seasons, with higher contributions of up to 75% of the total Chl a in summer and fall. The exception is the western boundary along the Kamchatka Peninsula and Kuril Islands and the Oyashio region where diatoms make up the majority of total Chl a during the spring bloom. Among the picophytoplankton, picoeukaryotes and Synechococcus are approximately equally abundant, but the former is more important in term of carbon biomass. Despite the lack of a clear seasonal variation in Chl a concentration, primary productivity showed a large seasonal variation, and was lowest in winter and highest in spring. Seasonal succession in the phytoplankton community is also evident with the abundance of diatoms peaking in May, followed by picoeukaryotes and Synechococcus in summer. The growth of phytoplankton (especially >10 μm cell size) in the western subarctic Pacific is often limited by iron bioavailability, and microzooplankton grazing keeps the standing stock of pico- and nano-phytoplankton low. Compared to the other HNLC regions (the eastern equatorial Pacific, the Southern Ocean, and the eastern subarctic Pacific), iron limitation in the Western Subarctic Gyre (WSG) may be less severe probably due to higher iron concentrations. The Oyashio region has similar physical condition, macronutrient supply and phytoplankton species compositions to the WSG, but much higher phytoplankton biomass and primary productivity. The difference between the Oyashio region and the WSG is also believed to be the results of difference in iron bioavailability in both regions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
13.
一种提高粘土矿物去除赤潮生物能力的新方法   总被引:36,自引:7,他引:36  
在研究粘土颗粒与赤潮生物絮凝作用的基础上,建立了粘土表面改性对其絮凝作用影响的理论模型,认为改变粘土颗粒的表面性质提高其去除赤潮生物能力的主要途径,提出在粘土中引入PACS(聚羟基氯化铝)的改性方法。结果表明,对于微型原甲藻(Proro-centrum minimun)体系,粘土中引入微量PACS后,其去除率达90%以上的高岭土用量由原来的2g/L降至0.1g/L,去除效率提高近20倍。考察了PA  相似文献   
14.
粘土矿物对海水中主要营养盐的吸附研究   总被引:20,自引:1,他引:20  
对海水中磷盐和硝酸盐在粘土矿物上的吸附行为的研究发现,海水体系中高岭土对磷酸盐的吸附能力大于蒙脱土,其原因为,粘土颗粒的表层铝/硅结构比是控制磷酸盐吸附的主要因素,其中铝含量越高,肿附能力越大。考察PH、粘土酸改性处理等因素对吸附作用的影响,结果表明,PH<8.5的磷酸盐吸附PH曲线呈峰形,其吸附作用以阴离子交换为主;PH>8.5时磷酸盐的吸附作用以沉淀吸附为主。酸改性蒙脱土可提高吸附磷酸盐的能力  相似文献   
15.
利用1989年在大西洋热液活动区采集的块状硫化物样品,采用矿相显微镜、电子显微镜和电子探针等手段,进行了矿物共生组合、矿物形态与成分标型及其演化特征研究。结果表明,大西洋热液成矿作用可以划分为热液期与沉积期两个成矿期,和石英-黄铁矿阶段、黄铁矿阶段、多金属硫化物阶段、胶状黄铁矿阶段和非晶质SiO2阶段等5个成矿阶段;不同成矿阶段黄铁矿的共生矿物和矿物特征不同,在晶体形态上具有从单形晶-聚形晶-胶状  相似文献   
16.
苏安金  苏阳 《江苏地质》2008,32(3):235-238
介绍了危机矿山的定义.对江苏省主要固体矿产矿山的危机程度进行了综合分析.叙述了能源矿产、金属矿产和其他非金属矿产等矿山所属的危机程度.指出了危机矿山存在的主要问题,即矿产资源保证程度低;资源潜力依据充分,但找矿难度大.就江苏危机矿山深部及外围潜力资源找矿工作,提出了一些建议.  相似文献   
17.
Rare earth elements (REE) have been mined in North America since 1885, when placer monazite was produced in the southeast USA. Since the 1960s, however, most North American REE have come from a carbonatite deposit at Mountain Pass, California, and most of the world’s REE came from this source between 1965 and 1995. After 1998, Mountain Pass REE sales declined substantially due to competition from China and to environmental constraints. REE are presently not mined at Mountain Pass, and shipments were made from stockpiles in recent years. Chevron Mining, however, restarted extraction of selected REE at Mountain Pass in 2007. In 1987, Mountain Pass reserves were calculated at 29 Mt of ore with 8.9% rare earth oxide based on a 5% cut‐off grade. Current reserves are in excess of 20 Mt at similar grade. The ore mineral is bastnasite, and the ore has high light REE/heavy REE (LREE/HREE). The carbonatite is a moderately dipping, tabular 1.4‐Ga intrusive body associated with ultrapotassic alkaline plutons of similar age. The chemistry and ultrapotassic alkaline association of the Mountain Pass deposit suggest a different source than that of most other carbonatites. Elsewhere in the western USA, carbonatites have been proposed as possible REE sources. Large but low‐grade LREE resources are in carbonatite in Colorado and Wyoming. Carbonatite complexes in Canada contain only minor REE resources. Other types of hard‐rock REE deposits in the USA include small iron‐REE deposits in Missouri and New York, and vein deposits in Idaho. Phosphorite and fluorite deposits in the USA also contain minor REE resources. The most recently discovered REE deposit in North America is the Hoidas Lake vein deposit, Saskatchewan, a small but incompletely evaluated resource. Neogene North American placer monazite resources, both marine and continental, are small or in environmentally sensitive areas, and thus unlikely to be mined. Paleoplacer deposits also contain minor resources. Possible future uranium mining of Precambrian conglomerates in the Elliott Lake–Blind River district, Canada, could yield by‐product HREE and Y. REE deposits occur in peralkaline syenitic and granitic rocks in several places in North America. These deposits are typically enriched in HREE, Y, and Zr. Some also have associated Be, Nb, and Ta. The largest such deposits are at Thor Lake and Strange Lake in Canada. A eudialyte syenite deposit at Pajarito Mountain in New Mexico is also probably large, but of lower grade. Similar deposits occur at Kipawa Lake and Lackner Lake in Canada. Future uses of some REE commodities are expected to increase, and growth is likely for REE in new technologies. World reserves, however, are probably sufficient to meet international demand for most REE commodities well into the 21st century. Recent experience shows that Chinese producers are capable of large amounts of REE production, keeping prices low. Most refined REE prices are now at approximately 50% of the 1980s price levels, but there has been recent upward price movement for some REE compounds following Chinese restriction of exports. Because of its grade, size, and relatively simple metallurgy, the Mountain Pass deposit remains North America’s best source of LREE. The future of REE production at Mountain Pass is mostly dependent on REE price levels and on domestic REE marketing potential. The development of new REE deposits in North America is unlikely in the near future. Undeveloped deposits with the most potential are probably large, low‐grade deposits in peralkaline igneous rocks. Competition with established Chinese HREE and Y sources and a developing Australian deposit will be a factor.  相似文献   
18.
In this provenance study of late Palaeozoic metasediments of the Eastern Andean Metamorphic Complex (EAMC) along the south Patagonian proto-Pacific margin of Gondwana, the palaeogeological setting of the continental margin in Devonian–Carboniferous and Permian times is reconstructed. The study is based on detrital heavy mineral contents, chemical compositions of tourmaline grains, and whole rock element and Nd-Sr isotopic compositions. Element and isotopic compositions reveal that Devonian–Carboniferous metaturbidites deposited before the development of a Late Carboniferous–Permian magmatic arc along the margin were mainly fed from felsic, recycled, old continental rocks. The last recycling phase involved erosion of metasediments that were exposed in Patagonia. Feeder systems to the basin cut either through epidote-rich or garnet-rich metasediments. In Permian time, EAMC metaturbidites were deposited next to the evolving magmatic arc and were derived from felsic, crustal rocks. Two provenance domains are recognised. The metasediments of the northern one are chemically similar to those of the Devonian–Carboniferous metasediments. This domain was fed from the metasedimentary host rocks of the magmatic arc. The southern domain probably was fed from the arc proper, as indicated mainly by the dominance of metaplutonic lithic fragments, abundant detrital biotite, and the major element composition of the metasediments.  相似文献   
19.
The Oberstdorf nappe of the Western and the Laab nappe of the Eastern Rhenodanubian Flysch (ERF) were independently identified as out-of-sequence thrust units by facies studies (Mattern 1999) and zircon analyses (Trautwein et al. 2001a, b, c), respectively. A new look at both areas reveals mutual similarities and new evidence for the out-of-sequence concept. Paleocurrent and heavy mineral data make it possible to reconstruct the sediment influx directions. From the Barremian to the mid-Campanian, the western and eastern basin segments were fed with south-derived garnet and north-derived zircon/”ZTR” (i.e., zircon, tourmaline, and rutile). Because both out-of-sequence units are relatively rich in zircon/ZTR they must have occupied the northernmost basin position. In the Western Rhenodanubian Flysch segment, the Sigiswang nappe occupied the central and the Üntschen nappe the southernmost basin position. In the ERF segment the central basin is represented by the Greifenstein nappe and the southernmost basin by the Kahlenberg nappe. Both out-of-sequence units do not occur in the northernmost and tectonically lowest position in their respective nappe piles as they were thrust over the other nappes. The reconstructed basin positions of the thrust units are suggested by the observation of a gradient in heavy mineral content in the thrust units. This paleogeographic arrangement is least problematic and renders models with differently positioned thrust units, requiring debris-shedding intrabasinal ridges, as unnecessarily complicated. Instead, we suggest that gradual changes in heavy mineral composition existed in across-basin direction. Garnet may stem from the Central Gneiss Complex of the Tauern window and formerly exposed lateral equivalents, all representing the southern Mid-Penninic zone. We assign the Falknis/Tasna nappe and formerly exposed lateral equivalents to the northern Mid-Penninic zone which served as the zircon/ZTR source. Interpreting Ebbing’s (Ph.D. thesis, Freie Universität Berlin, pp 1-143, 2002; Fig. 6.10) density section, we suggest that Mid-Penninic crust exists beneath the Central Gneiss Complex. During the latest Cretaceous much garnet was also N-derived. This may reflect processes related to the consumption of the North Penninic basin.  相似文献   
20.
Zinc–lead–barite deposits located in Lefan and Lower Banik localities of about 25 km northeast of Zakho City, Northern Iraq consist of a group of strata-bound sulfides hosted in Upper Cretaceous (Upper Campanian–Maastrichtian) dolomitic limestone. Carbonate-hosted ores contain 3.77% Zn, 2% Pb, and 5% Fe, while in lower Banik, they contain 1.5% Zn, 0.37% Pb, and 1.4% Fe. Diagenetic processes, such as dolomitization and recrystalization in addition to the type of microfacies, provided appropriate physical and chemical conditions that permitted the passage of ore-bearing fluids and participated in precipitation and ore localization. These deposits are precipitated in a platform and developed within the Foreland Thrust Belt. Ore precipitated as infill of intergranular dolomite porosity with replaced dolomite and rudist shells forming disseminated crystals that occupy intergranular pore spaces around dolomite and calcite and as infill of dissolution spaces and fractures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号