首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   895篇
  免费   165篇
  国内免费   354篇
测绘学   7篇
大气科学   11篇
地球物理   203篇
地质学   1005篇
海洋学   71篇
天文学   7篇
综合类   38篇
自然地理   72篇
  2024年   3篇
  2023年   11篇
  2022年   36篇
  2021年   31篇
  2020年   39篇
  2019年   48篇
  2018年   48篇
  2017年   32篇
  2016年   59篇
  2015年   57篇
  2014年   68篇
  2013年   78篇
  2012年   77篇
  2011年   76篇
  2010年   81篇
  2009年   71篇
  2008年   69篇
  2007年   49篇
  2006年   70篇
  2005年   56篇
  2004年   49篇
  2003年   47篇
  2002年   33篇
  2001年   38篇
  2000年   23篇
  1999年   25篇
  1998年   16篇
  1997年   19篇
  1996年   19篇
  1995年   10篇
  1994年   17篇
  1993年   12篇
  1992年   11篇
  1991年   7篇
  1990年   8篇
  1989年   7篇
  1988年   5篇
  1987年   4篇
  1985年   3篇
  1982年   1篇
  1971年   1篇
排序方式: 共有1414条查询结果,搜索用时 15 毫秒
51.
Rate effects are examined in the steady pore pressure distribution induced as a result of penetration of standard and ball penetrometers. The incompressible flow field, which develops around the penetrometer is used to define the approximate soil velocity field local to the penetrometer tip. This prescribes the Lagrangian framework for the migration of the fluid saturated porous medium, defining the advection of induced pore pressures relative to the pressure‐monitoring locations present on the probe face. In two separate approaches, different source functions are used to define the undrained pore fluid pressures developed either (i) on the face of the penetrometer or (ii) in the material comprising the failure zone surrounding the penetrometer tip. In the first, the sources applied at the tip face balance the volume of fluid mobilized by the piston displacement of the advancing penetrometer. Alternately, a fluid source distribution is evaluated from plasticity solutions and distributed throughout the tip process zone: for a standard penetrometer, the solution is for the expansion of a spherical cavity, and for the ball penetrometer, the solution is an elastic distribution of stresses conditioned by the limit load embedded within an infinite medium. For the standard penetrometer, the transition from drained to undrained behavior occurs over about two orders of magnitude in penetration rate for pore pressures recorded at the tip (U1) and about two‐and‐a‐half orders of magnitude for the shoulder (U2). This response is strongly influenced by the rigidity of the soil and slightly influenced by the model linking induced total stresses to pore pressures. For the ball penetrometer, the transition from drained to undrained behavior also transits two‐and‐a‐half orders of magnitude in penetration rate, although it is offset to higher dimensionless penetration rates than for standard penetration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
52.
This paper presents a finite‐element (FE) model for simulating injection well testing in unconsolidated oil sands reservoir. In injection well testing, the bottom‐hole pressure (BHP) is monitored during the injection and shut‐in period. The flow characteristics of a reservoir can be determined from transient BHP data using conventional reservoir or well‐testing analysis. However, conventional reservoir or well‐testing analysis does not consider geomechanics coupling effects. This simplified assumption has limitations when applied to unconsolidated (uncemented) oil sands reservoirs because oil sands deform and dilate subjected to pressure variation. In addition, hydraulic fracturing may occur in unconsolidated oil sands when high water injection rate is used. This research is motivated in numerical modeling of injection well testing in unconsolidated oil sands reservoir considering the geomechanics coupling effects including hydraulic fracturing. To simulate the strong anisotropy in mechanical and hydraulic behaviour of unconsolidated oil sands induced by fluid injection in injection well testing, a nonlinear stress‐dependent poro‐elasto‐plastic constitutive model together with a strain‐induced anisotropic permeability model are formulated and implemented into a 3D FE simulator. The 3D FE model is used to history match the BHP response measured from an injection well in an oil sands reservoir. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
53.
This paper presents an instability theory that can be used to understand the fundamental behavior of an acidization dissolution front when it propagates in fluid‐saturated carbonate rocks. The proposed theory includes two fundamental concepts, namely the intrinsic time and length of an acidization dissolution system, and a theoretical criterion that involves the comparison of the Zhao number and its critical value of the acidization dissolution system. The intrinsic time is used to determine the time scale at which the acidization dissolution front is formed, while the intrinsic length is used to determine the length scale at which the instability of the acidization dissolution front can be initiated. Under the assumption that the acidization dissolution reaction is a fast process, the critical Zhao number, which is used to assess the instability likelihood of an acidization dissolution front propagating in fluid‐saturated carbonate rocks, has been derived in a strictly mathematical manner. Based on the proposed instability theory of a propagating acidization dissolution front, it has been theoretically recognized that: (i) the increase of the mineral dissolution ratio can stabilize the acidization dissolution front in fluid‐saturated carbonate rocks; (ii) the increase of the final porosity of the carbonate rock can destabilize the acidization dissolution front, while the increase of the initial porosity can stabilize the acidization dissolution front in fluid‐saturated carbonate rocks; (iii) the increase of the mineral dissolution ratio can cause an increase in the dimensionless propagation speed of the acidization dissolution front; (iv) the increase of the initial porosity can enable the acidization dissolution front to propagate faster, while the increase of the final porosity can enable the acidization dissolution front to propagate slower in the acidization dissolution system. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
54.
Transport properties of rocks from statistics and percolation   总被引:7,自引:0,他引:7  
Two simplified microstructural models that account for permeability and conductivity of low-porosity rocks are compared. Both models result from statistics and percolation theory. The first model assumes that transport results from the connection of 1D objects or pipes; the second model assumes that transport results from the connection of 2D objects or cracks. In both cases, statistical methods permit calculation of permeability k and conductivity , which are dependent on three independent microvariables: average pipe (crack) length, average pipe radius (crack aperture), and average pipe (crack) spacing. The degree of connection is one aspect of percolation theory. Results show that use of the mathematical concept of percolation and use of the rock physics concept of tortuosity are equivalent. Percolation is used to discuss k and near the threshold where these parameters vanish. Relations between bulk parameters (permeability, conductivity, porosity) are calculated and discussed in terms of microvariables.  相似文献   
55.
Contrary to the traditional view, seismic attenuation in Biot's theory of fluid-saturated porous media is due to viscous damping of local (not global) pore-fluid motion. Since substantial inhomogeneities in fluid permeability of porous geological materials are to be expected, the regions of highest local permeability contribute most to the wave energy dissipation while those of lowest permeability dominate the fluid flow rate if they are uniformly distributed. This dichotomy can explain some of the observed discrepancies between computed and measured attenuation of compressional and shear waves in porous earth. One unfortunate consequence of this result is the fact that measured seismic wave attenuation in fluid-filled geological materials cannot be used directly as a diagnostic of the global fluid-flow permeability.  相似文献   
56.
57.
Conclusion A simple method of estimating fracture porosity and permeability based on empirical relations between fracture aperture andJRC andJCS can be developed. This shows very close correlation with existing data, using simple discontinuity models. There is quite a good correlation between fracture porosity and permeability and depth for larger initial apertures.  相似文献   
58.
塔克拉玛干沙漠中发育有众多的古河道,其密集区主要集中在大沙漠中部。不同河流的古河道,含水层岩性有明显差异,地下水的富水性也明显不同。但沿古河道,地下水富水性均较两侧好,水质也相对较好,多为淡水和微咸水,为在沙漠区寻找水资源提供了方向  相似文献   
59.
本文阐述了利用储层毛细管压力曲线计算含油炮和度的方法,该方法在东海油气储量计算中取得良好的结果。  相似文献   
60.
Although several researchers have pointed out some advantages and disadvantages of various soil sampling designs in the presence of spatial autocorrelation, a more detailed study is presented herein which examines the geometrical relationship of three sampling designs, namely the square, the equilateral triangle, and the regular hexagon. Both advantages and disadvantages exist in the use of these designs with respect to estimation of the semivariogram and their effect on the mean square error or variance of error. This research could be used to design optimal sampling strategies; it is based on the theory of regionalized variables, in which the intrinsic hypothesis is satisfied. Among alternative designs, an equilateral triangle design gives the most reliable estimate of the semivariogram. It also gives the minimum maximum mean square error of point estimation of the concentration over the other two designs for the same number of measurements when the nugget effect is small relative to the variance. If the nugget effect is large (.90 2 or more), and the linear sampling density is >0.85r where r is the range, the hexagonal design is best. This study computes and compares the maximum mean square error for each of these designs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号