首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   3篇
  国内免费   2篇
大气科学   1篇
地球物理   19篇
地质学   4篇
海洋学   2篇
自然地理   2篇
  2020年   2篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   4篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1996年   1篇
排序方式: 共有28条查询结果,搜索用时 937 毫秒
11.
Understanding patterns of expansion, contraction, and disconnection of headwater stream length in diverse settings is invaluable for the effective management of water resources as well as for informing research in the hydrology, ecology, and biogeochemistry of temporary streams. More accurate mapping of the stream network and quantitative measures of flow duration in the vast headwater regions facilitate implementation of water quality regulation and other policies to protect waterways. We determined the length and connectivity of the wet stream and geomorphic channel network in 3 forested catchments (<75 ha) in each of 4 physiographic provinces of the Appalachian Highlands: the New England, Appalachian Plateau, Valley and Ridge, and Blue Ridge. We mapped wet stream length 7 times at each catchment to characterize flow conditions between exceedance probabilities of <5% and >90% of the mean daily discharge. Stream network dynamics reflected geologic controls at both regional and local scales. Wet stream length was most variable at two Valley and Ridge catchments on a shale scarp slope and changed the least in the Blue Ridge. The density and source area of flow origins differed between the crystalline and sedimentary physiographic provinces, as the Appalachian Plateau and Valley and Ridge had fewer origins with much larger contributing areas than New England and the Blue Ridge. However, the length and surface connectivity of the wet stream depended on local lithology, geologic structure, and the distribution of surficial deposits such as boulders, glacially derived material, and colluival debris or sediment valley fills. Several proxies indicate the magnitude of stream length dynamics, including bankfull channel width, network connectivity, the base flow index, and the ratio of geomorphic channel to wet stream length. Consideration of geologic characteristics at multiple spatial scales is imperative for future investigations of flow intermittency in headwaters.  相似文献   
12.
Abstract

Severe unidirectional Fourier truncation of the equations for 2-D incompressible flow leads to a system of three coupled PDEs in one space dimension with the same quadratic invariants as the original set (i.e. energy and enstrophy). Numerically generated equilibria for inviscid, truncated versions of the reduced system are well approximated by Kraichnan's energy-enstrophy equipartition spectra. Viscous calculations for decaying turbulence at moderate resolution (1024 degrees of freedom) also appear to be consistent with a direct, k ?3, enstrophy cascading inertial range when the dissipation is small. Dissipation range intermittency in the form of spatially intermittent enstrophy dissipation with occasional strong bursts producing linear phase locking is also observed. In contrast to full 2-D simulations, no tendency towards the emergence of isolated, coherent vorticity structures is observed. The model consequently mimics some, but not all, of the properties of the full 2-D set.  相似文献   
13.
ABSTRACT

Trees concentrate rainfall to near-stem soils via stemflow. When canopy structures are organized appropriately, stemflow can even induce preferential flow through soils, transporting nutrients to biogeochemically active areas. Bark structure significantly affects stemflow, yet bark-stemflow studies are primarily qualitative. We used a LaserBark to compute bark microrelief (MR), ridge-to-furrow amplitude (R) and slope (S) metrics per American Society of Mechanical Engineering standards (ASME-B46.1–2009) for two morphologically contrasting species (Fagus sylvatica L. (European beech), Quercus robur L. (pendunculate oak)) under storm conditions with strong bark water storage capacity (BWSC) influence in central Germany. Smaller R and S for F. sylvatica significantly lowered BWSC, which strongly and inversely correlated to maximum funnelling ratios and permitted stemflow generation at lower rain magnitudes. Larger R and S values in Q. robur reduced funnelling, diminishing stemflow drainage for larger storms. Quercus robur funnelling and stemflow was more reliant on intermediate rain intensities and intermittency to maintain bark channel-dependent drainage pathways. Shelter provided by Q. robur’s ridged bark also appears to protect entrained water, lengthening mean intrastorm dry periods necessary to affect stemflow. Storm conditions where BWSC plays a major role in stemflow accounted for much of 2013’s rainfall at the nearest meteorological station (Wulferstedt).
Editor M.C. Acreman; Associate editor not assigned  相似文献   
14.
Two datasets of turbulence velocities collected over different bedform types under contrasting experimental conditions show similarity in terms of velocity‐intermittency characteristics and suggest a universality to the velocity‐intermittency structure for flow over bedforms. One dataset was obtained by sampling flow over static bedforms in different locations, and the other was based on a static position but mobile bedforms. A flow classification based on the velocity‐intermittency behaviour is shown to reveal some differences from that based on an analysis of Reynolds stresses, boundary layer correlation and turbulent kinetic energy. This may be attributed to the intermittency variable, which captures the local effect of individual turbulent flow structures. Locations in the wake region or the outer layer of the flow are both shown to have a velocity‐intermittency behaviour that departs from that for idealized wakes or outer layer flow because of the superposition of localized flow structures generated by bedforms. The combined effect of this yields a velocity‐intermittency structure unique to bedform flow. The use of a time series of a single velocity component highlights the potential power of our approach for field, numerical and laboratory studies. The further validation of the velocity‐intermittency method for non‐idealized flows undertaken here suggests that this technique can be used for flow classification purposes in geomorphology, hydraulics, meteorology and environmental fluid mechanics. © 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
15.
The spatial and temporal discharge regime and its effects on benthic communities were studied in two small temporary karstic stream systems of the Paderborner Hochfläche (East Westphalia, Germany). Both streams are characterized by very small perennial springbrook sections. Benthic invertebrates were sampled three times at 12 sites and discharge was measured monthly from March to September 2000. The spatial extension of streamflow was observed regularly to evaluate the duration of drought. Both streams showed a longitudinal gradient of hydrological intermittency from very small perennial reaches with low intermittency to an extremely harsh hydrological situation. The benthic communities displayed a decreasing species richness at increasing intermittency. The different hydrological stream sections were colonized by different lotic communities, characterized by typical species of temporary streams and by several typical species of springs. Particularly the perennial springs and springbrooks are very important for the species richness in these karstic stream systems.  相似文献   
16.
For the purpose of numerically studying sahelian storm rainfields, a family of random functions is described with a characterization of its finite dimensional law. Some problems appearing when fitting its functional parameters are put forward and two solutions to bypass those problems are provided, according to the regularity properties of the marginal cumulative distribution function. An illustration of this method is implemented on a set of sahelian rainfields of event accumulation displaying a strong spatial intermittency.  相似文献   
17.
The structure of the turbulence in the atmospheric surface layer over a monsoon trough region has been studied using structural analysis based on wavelet transform. The observational site is located at the eastern (wet) end of the monsoon trough region, characterized by high moisture in the atmospheric surface layer. On the average relative humidity varied from 70% to 100% during the experiment. The wind and temperature data, collected at Kharagpur (22°25' N, 87°18' E) at six observational hours of a day in June 1990 during the Monsoon Trough Boundary Layer Experiment (MONTBLEX), have been utilized in the study. The wind and instantaneous momentum flux time series were decomposed into 12 scales using the Haar wavelet transform. The eddies exhibited a large temporal variability generating intermittency in the energy and flux distributions. A criterion based on the isotropy has been suggested for separating the large eddies from the small eddies. At the separation scale the isotropy coefficient drops sharply. It is shown that the intermittency in the small eddies resulted from the spatial variation of energy, and deviation of velocity statistics from the Gaussian distribution known as flatness. The deviation from the -5/3 power law has been attributed to the increased mean values of, (i) the coefficient of variation of energy, and (ii) the flatness factor, in the inertial subrange. The decomposition of the instantaneous momentum flux time series reveals that the major contribution to the total flux arises from the large eddies. The quadrant analysis of the momentum flux shows that ejections and sweeps account for a substantial part of the total flux, and quantifies the relative importance of the various spatial scales that contribute to the transport of momentum.  相似文献   
18.
Abstract

A disaggregation procedure is presented to render forecast values of precipitation from an atmospheric model with spatial resolution of 11 × 11 km suitable as input for a distributed hydrological model with spatial resolution of 1.1 × 1.1 km. Statistical and morphological properties of the input field, such as spatial mean, variance, correlation structure and intermittency, are respected in the disaggregated field. The adopted approach is a combination of interpolation and simulation. The four nodal points of the atmospheric model grid cell are used both for determining the parameters of the exponential distribution for simulating precipitation values, and in a simple interpolation procedure to determine the spatial location of the precipitation values. A shifted distribution with two parameters is used in the case of full coverage of the grid cell, and a one-parameter distribution with a theoretically derived intermittency parameter is used if intermittency is present. The results are promising with respect to the statistical and morphological properties of the disaggregated field.  相似文献   
19.
David Dunkerley 《水文研究》2015,29(15):3294-3305
The metric or ‘observable’ properties of intra‐event rainfall intermittency (IERI) are quantified using a 10‐year record from arid Fowlers Gap, Australia. Rainfall events were delineated using the minimum inter‐event time (MIT) criterion, using eight values in the range of 1 h – 24 h. Within events, no‐rain periods were defined as corresponding to rainfall rates R < 0.1 mm/h or R < 0.2 mm/h (both less than typical wet‐canopy evaporation rates during rainfall). In this way, rainfall events were subdivided into rain and no‐rain periods. Intermittency was characterised using two measures: the fraction of rainless time within an event, and the duration of the longest rainless period. Events identified using a minimum inter‐event time (MIT) of 24 h included on average 9.4 h of contiguous no‐rain time (47.5% of the mean event duration), and only 6.8 h of contiguous rain. Total IERI averaged 51.1% for these events. Events defined with MIT = 6 h (a value commonly adopted in the literature) exhibited a mean of 1.53 h of no‐rain and 9.04 h of contiguous rain. Total IERI averaged 13.9% for these events for R < 0.1 mm/h, but reached 39.2% if no‐rain periods were taken as those of <0.2 mm/h. The maximum contiguous no‐rain period for events defined using MIT = 6 h was 10.9 h from an event of 12.6 h duration, and this represents 86.5% of the event duration. Results demonstrate that smaller, shorter, and less intense rainfall events tend to exhibit higher IERI than larger, longer, and more intense events. IERI is relevant to the understanding of land surface processes. Information on the metric properties of IERI in different rainfall types (convective and stratiform) and rainfall climates (arid, maritime, and wet tropical) may prove to have significance for diverse studies in land surface hydrology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
20.
In this study, the effect of zero measurements on the spatial correlation function of rainfall is analyzed for the quantification of a rainfall field. The use of a bivariate mixed distribution function made it possible to analyze and compare the spatial correlation functions for these three different data sets: only the positive measurements at both gauge locations, positive measurements at either one or both gauge locations, and all measurements including zero at both locations. As an example, the spatial correlation functions are derived for the Geum River Basin, Korea and evaluated for the wet and dry seasons, respectively. Results show that the effect of zero measurements on spatial correlation structures is significant during the wet season, when the inter-station correlations were estimated significantly lower than those during the dry season. It was also found that only the case considering positive measurements are valid for the quantification of rainfall field. Even during the wet season, the inter-station correlation coefficients derived by considering the zero measurements show their high variability along with many abnormally looking high estimates, which made the quantification of the spatial correlation function become very ambiguous.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号