全文获取类型
收费全文 | 795篇 |
免费 | 130篇 |
国内免费 | 210篇 |
专业分类
测绘学 | 2篇 |
大气科学 | 2篇 |
地球物理 | 302篇 |
地质学 | 762篇 |
海洋学 | 7篇 |
天文学 | 1篇 |
综合类 | 18篇 |
自然地理 | 41篇 |
出版年
2024年 | 4篇 |
2023年 | 13篇 |
2022年 | 23篇 |
2021年 | 33篇 |
2020年 | 43篇 |
2019年 | 41篇 |
2018年 | 24篇 |
2017年 | 36篇 |
2016年 | 32篇 |
2015年 | 39篇 |
2014年 | 38篇 |
2013年 | 80篇 |
2012年 | 56篇 |
2011年 | 40篇 |
2010年 | 34篇 |
2009年 | 44篇 |
2008年 | 46篇 |
2007年 | 64篇 |
2006年 | 56篇 |
2005年 | 45篇 |
2004年 | 53篇 |
2003年 | 31篇 |
2002年 | 38篇 |
2001年 | 26篇 |
2000年 | 21篇 |
1999年 | 19篇 |
1998年 | 15篇 |
1997年 | 21篇 |
1996年 | 28篇 |
1995年 | 18篇 |
1994年 | 17篇 |
1993年 | 9篇 |
1992年 | 12篇 |
1991年 | 8篇 |
1990年 | 7篇 |
1989年 | 6篇 |
1988年 | 6篇 |
1986年 | 4篇 |
1985年 | 3篇 |
1984年 | 2篇 |
排序方式: 共有1135条查询结果,搜索用时 15 毫秒
51.
52.
Tang Yuanjun 《地球科学》1986,(1)
以江西德兴斑岩铜矿床之细矿脉为研究对象,文章介绍了细矿脉剖面采集及研究的工作方法,着重讨论了自矿脉至围岩元素的空间展布特征。成矿元素Cu、Ag、S和控矿元素Fe、Rb、K都属确定性分布型。对照元素的扩散和渗滤理想模式,得到如下认识:在成矿成晕的地球化学过程中,成矿元素Cu、Ag、S以及Fe以扩散作用为主,控矿元素K和Rb以渗滤作用为主。 相似文献
53.
54.
华北克拉通北部高寺台晚古生代环状杂岩体是一套富单斜辉石的超镁铁质岩,是研究华北北部地幔碳酸盐化熔体交代作用的理想对象,同时也是华北克拉通北部晚古生代岩浆活动与深部碳循环联系的纽带。作者在岩体西部边缘识别出一套早二叠世早期富铁角闪单斜辉石岩,形成时代为297.8±3.4Ma。结合岩体东部辉石岩早泥盆世和早石炭世的成岩年龄,表明高寺台超镁铁质杂岩体可能是晚古生代多期岩浆侵位的产物。其次,高寺台环状超镁铁质杂岩体缺少大面积辉长岩和闪长岩、硫化物和Cu-Ni-PGE矿化,单斜辉石成分具有裂谷带堆晶岩矿物特征,角闪石也具有相对低的结晶温度(933~947℃)和压力(287~323MPa)及水含量(4.06%~5.10%),而且区域上尚未发现同期环状杂岩体和蛇绿岩,与岛弧拼贴到陆块后沿俯冲带延伸数万米侵位的阿拉斯加型环状杂岩体明显不同。另外,前人的研究显示,与铬铁矿中富镁单斜辉石包裹体平衡的苦橄质母岩浆显示出OIB的特征,具有强烈的重稀土分馏、富Nb和高Nb/La,异常高的Ca/Al和(La/Yb)N,低的Ti/Eu、Zr/Sm和Hf/Sm,这些特征都表明苦橄质母岩浆起源于石榴石相软流圈地幔,且源区遭受过显著的碳酸盐熔体交代。单斜辉石岩中单斜辉石及角闪石成分及其平衡岩浆成分记录了母岩浆与岩石圈地幔相互作用后的岩浆演化过程,也显示出比母岩浆弱的源区碳酸盐熔体交代印记。此外,岩浆房在地壳浅部经历了多期深部岩浆补给和富铁熔体贯入,同时带来热量和挥发分,触发晶粥体活化,促进了岩浆的上升运移。高寺台环状超镁铁质杂岩体具有板内成因特征,可能是陆内岩石圈伸展的产物。华北克拉通北部晚石炭世-早二叠世三个岩浆事件峰期很好地对应着全球三次升温和CO_(2)回升事件,岩石圈伸展能有效促进强烈的中酸性岩浆活动及起源于碳酸盐化地幔的基性岩浆释放出大量的CO_(2),它们可能是晚石炭末期-早二叠世早期全球大气CO_(2)回升的贡献者之一。 相似文献
55.
Stormwater infiltration systems are a popular method for urban stormwater control. They are often designed using an assumption of one‐dimensional saturated outflow, although this is not very accurate for many typical designs where two‐dimensional (2D) flows into unsaturated soils occur. Available 2D variably saturated flow models are not commonly used for design because of their complexity and difficulties with the required boundary conditions. A purpose‐built stormwater infiltration system model was thus developed for the simulation of 2D flow from a porous storage. The model combines a soil moisture–based model for unsaturated soils with a ponded storage model and uses a wetting front‐tracking approach for saturated flows. The model represents the main physical processes while minimizing input data requirements. The model was calibrated and validated using data from laboratory 2D stormwater infiltration trench experiments. Calibrations were undertaken using five different combinations of calibration data to examine calibration data requirements. It was found that storage water levels could be satisfactorily predicted using parameters calibrated with either data from laboratory soils tests or observed water level data, whereas the prediction of soil moistures was improved through the addition of observed soil moisture data to the calibration data set. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
56.
Kishor Panjabi Pradeep Goel Prasad Daggupati Narayan Kumar Shrestha Rituraj Shukla 《水文科学杂志》2020,65(13):2224-2232
ABSTRACT In humid regions, surface runoff is often generated by saturation-excess runoff mechanisms from relatively small variable source areas (VSAs). However, the majority of the current hydrologic models are based on infiltration-excess mechanisms. In this study, the AGricultural Non-Point Source Pollution (AGNPS) model was used to integrate the VSA concept using topographic wetness index (TWI). Both the original and AGNPS-VSA models were evaluated for a small agricultural field in Ontario, Canada. The results indicate that the AGNPS-VSA model performed better than original model. The AGNPS-VSA model predicted that only the saturated portion of the field with higher TWI values produced runoff, whereas the original AGNPS model showed uniform hydrologic response from the entire field. The results of this study are important for accurately mapping the locations of VSAs. This new model could be a powerful tool in identifying critical source areas for applying targeted best management practices to minimize pollutant loads to receiving waters. 相似文献
57.
The source and hydrochemical makeup of a stream reflects the connectivity between rainfall, groundwater, the stream, and is reflected to water quantity and quality of the catchment. However, in a semi-arid, thick, loess covered catchment, temporal variation of stream source and event associated behaviours are lesser known. Thus, the isotopic and chemical hydrographs in a widely distributed, deep loess, semi-arid catchment of the northern Chinese Loess Plateau were characterized to determine the source and hydrochemical behaviours of the stream during intra-rainfall events. Rainfall and streamflow were sampled during six hydrologic events coupled with measurements of stream baseflow and groundwater. The deuterium isotope (2H), major ions (Cl−, SO42−, NO3−, Ca2+, K+, Mg2+, and Na+) were evaluated in water samples obtained during rainfall events. Temporal variation of 2H and Cl− measured in the groundwater and stream baseflow prior to rainfall was similar; however, the isotope compositions of the streamflow fluctuated significantly and responded quickly to rainfall events, likely due to an infiltration excess, overland dominated surface runoff during torrential rainfall events. Time source separation using 2H demonstrated greater than 72% on average, the stream composition was event water during torrential rainfall events, with the proportion increasing with rainfall intensity. Solutes concentrations in the stream had loglinear relationships with stream discharge, with an outling anomaly with an example of an intra-rainfall event on Oct. 24, 2015. Stream Cl− behaved nonconservative during rainfall events, temporal variation of Cl− indicated a flush and washout at the onset of small rainfall events, a dilution but still high concentration pattern in high discharge and old water dominated in regression flow period. This study indicates rainfall intensity affects runoff responses in a semi-arid catchment, and the stored water in the thick, loess covered areas was less connected with stream runoff. Solute transport may threaten water quality in the area, requiring further analysis of the performance of the eco-restoration project. 相似文献
58.
Desert pavements (DPs) are critical for maintaining ecological stability and promoting near-surface hydrological cycling in arid regions. However, few studies have focused on eco-hydrological processes of DPs in the ecological systems of fluvial fans. Although DP surfaces appear to be barren and flat, we found that the surfaces are characterized by surface mosaic patterns of desert pavement (mosaic DP) and bare ground (mosaic BG). We investigated the effects of mosaic DP on water infiltration and vegetation distribution at six sites in fluvial fans (one on a hillside and five within the sectors of fans) along a southwest belt transect in northern Linze County, in the central Hexi Corridor (China). We found significant differences in mosaic DP between the hillside and sector sites in terms of pavement thickness and vesicular horizon thickness (Av thickness), particle composition, and bulk density, although significant differences were absent for mass soil water content, gravel coverage, and surface gravel size. The mosaic DP inhibited water infiltration by the pavement layer, where the sorptivity (S), initial infiltration rate (iint), steady-state infiltration rate (isat) and infiltration time (T) averaged 1.19 cm/min-0.5, 0.64 cm/min, 0.13 cm/min and 12.76 min, respectively. Where the pavement layer was scalped, the S, iint, and isat increased by 0.27 cm/min-0.5, 0.52 cm/min, and 0.40 cm/min, respectively, and the T reduced by 7.42 min. Water infiltration was mainly controlled by the pavement layer thickness (+), Av thickness (−), surface gravel coverage (−), fine earth (+) and fine gravel (−) in the pavement layer. The DP surfaces only had a sparse covering of shrubs, but an abundance of herbs. Few shrubs were present on the mosaic DP, but a greater number of shrubs and herbs grew on the mosaic BG. It can be concluded that DPs can maintain vegetation stability for different surface mosaic patterns. This study deepens our understanding of the eco-hydrological cycle of DP landscapes in arid regions. 相似文献
59.
The present study examines the petrology and geochemistry of the Early Paleozoic Motai serpentinites, the South Kitakami Belt, northeast Japan, to reveal the subduction processes and tectonics in the convergent margin of the Early Paleozoic proto-East Asian continent. Protoliths of the serpentinites are estimated to be harzburgite to dunite based on the observed amounts of bastite (orthopyroxene pseudomorph). Relic chromian spinel Cr# [=Cr/(Cr + Al)] increases with decreasing amount of bastite. The compositional range of chromian spinel is similar to that found in the Mariana forearc serpentinites. This fact suggests that the protoliths of the serpentinites are depleted mantle peridotites developed beneath the forearc regions of a subduction zone. The Motai serpentinites are divided into two types, namely, Types 1 and 2 serpentinites; the former are characterized by fine-grained antigorite and lack of olivine, and the latter have coarse-grained antigorite and inclusion-rich olivine. Ca-amphibole occurs as isolated crystals or vein-like aggregates in the Type 1 serpentinites and as needle-shaped minerals in the Type 2 serpentinites. Ca-amphibole of the Type 1 serpentinites is more enriched in LILEs and LREEs, suggesting the influence of hydrous fluids derived from slabs. By contrast, the mineral assemblage, mineral chemistry, and field distribution of the Type 2 serpentinites reflect the thermal effect of contact metamorphism by Cretaceous granite. The Ca-amphibole of the Type 1 serpentinites is different from that of the Hayachine–Miyamori Ophiolite in terms of origin; the latter was formed by the infiltration of melts produced in an Early Paleozoic arc–backarc system. Chemical characteristics of the Ca-amphibole in the ultramafic rocks in the South Kitakami Belt reflect the tectonics of an Early Paleozoic mantle wedge, and the formation of the Motai metamorphic rocks in the forearc region of the Hayachine–Miyamori subduction zone system, which occurred at the Early Paleozoic proto-East Asian continental margin. 相似文献
60.
Precipitation is often the sole source of water replenishment in arid and semi‐arid areas and, thus, plays a pertinent role in sustaining desert ecosystems. Revegetation over 40 years using mainly Artemisia ordosica and Caragana korshinskii at Shapotou Desert Experimental Research Station near Lanzhou, China, has established a dwarf‐shrub and microbiotic soil crust cover on the stabilized sand dunes. The redistribution of infiltrated moisture through percolation, root extraction, and evapotranspiration pathways was investigated. Three sets of time‐domain reflectometry (TDR) probes were inserted horizontally at 5, 10, 15, 20, 30 and 40 cm depths below the ground surface in a soil pit. The three sets of TDR probes were installed in dwarf‐shrub sites of A. ordosica and C. korshinskii community with and without a microbiotic soil crust cover, and an additional set was placed in a bare sand dune area that had neither vegetation nor a microbiotic soil crust present. Volumetric soil moisture content was recorded at hourly intervals and used in the assessment of infiltration for the different surface covers. Infiltration varied greatly, from 7·5 cm to more than 45 cm, depending upon rainfall quantity and soil surface conditions. In the shrub community area without microbiotic soil crust cover, infiltration increased due to preferential flow associated with root tunnels. The microbiotic soil crust cover had a significant negative influence on the infiltration for small rainfall events (~10 mm), restricting the infiltration depth to less than 20 cm and increasing soil moisture content just beneath the soil profile of 10 cm, whereas it was not as strong or clear for larger rainfall events (~60 mm). For small rainfall events, the wetting front depth for the three kinds of surface cover was as follows: shrub community without microbiotic soil crust > bare area > shrub community with microbiotic soil crust. In contrast, for large rainfall events, infiltration was similar in shrub communities with and without microbiotic soil crust cover, but significantly higher than measured in the bare area. Soil water extraction by roots associated with evapotranspiration restricted the wetting front penetration after 1 to 3 h of rainfall. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献