首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   703篇
  免费   184篇
  国内免费   72篇
测绘学   37篇
大气科学   10篇
地球物理   415篇
地质学   327篇
海洋学   42篇
天文学   8篇
综合类   40篇
自然地理   80篇
  2024年   1篇
  2023年   5篇
  2022年   10篇
  2021年   14篇
  2020年   14篇
  2019年   29篇
  2018年   20篇
  2017年   30篇
  2016年   36篇
  2015年   39篇
  2014年   45篇
  2013年   40篇
  2012年   44篇
  2011年   40篇
  2010年   48篇
  2009年   39篇
  2008年   46篇
  2007年   49篇
  2006年   52篇
  2005年   44篇
  2004年   30篇
  2003年   37篇
  2002年   34篇
  2001年   18篇
  2000年   20篇
  1999年   30篇
  1998年   27篇
  1997年   18篇
  1996年   21篇
  1995年   8篇
  1994年   13篇
  1993年   8篇
  1992年   10篇
  1991年   11篇
  1990年   7篇
  1989年   5篇
  1988年   5篇
  1987年   1篇
  1986年   4篇
  1980年   3篇
  1979年   1篇
  1954年   3篇
排序方式: 共有959条查询结果,搜索用时 15 毫秒
21.
Abstract. The MITI Nankai Trough wells were drilled offshore Japan in the Tokai area in 1999 and 2000. The occurrence of methane hydrate was confirmed by various indicators in the borehole logs and from core data. These findings have a large impact on potential future Japanese energy resources and other related-scientific interests.
We first tried to find the methane hydrate-bearing zones using interval velocities derived from NMO velocity analysis. However, this analysis produced poor resolution. To achieve a more detailed delineation of the gas hydrate- and gas-bearing zones, we executed a seismic impedance inversion calibrated by the logs from two of the MITI Nankai Trough wells. Although these two wells are only about 90 m apart, we were able to produce an impedance section with fine detail by adopting a simple initial model and incorporating physical properties of the methane hydrate-bearing zones. The locations of the methane hydrate-bearing zones are readily apparent in the final section.  相似文献   
22.
Jan ílený 《Tectonophysics》2004,383(3-4):133-147
The retrieval of earthquake moment tensor (MT) requires the response of the medium, in which seismic waves travel from the hypocenter to the stations, to be known. In inverting long-period (LP) seismic data (teleseismic and LP regional records), a gross earth model is sufficient; with decreasing periods, a more detailed model is needed. This is the case when waveforms of weak earthquakes at regional distances are to be inverted. Regional moment tensors (RMTs) of mostly Mediterranean earthquakes are determined on a routine basis by the Swiss Seismological Survey (SED) by using averaged models of the earth's crust. By inverting broad-band records of the Mw=4.8 earthquake near Udine, N Italy, on Feb. 14, 2002, we tested the sensitivity of the MT solution with respect to possible errors in the earth model used and in the location of the hypocenter depth. We perturbed the P and S velocities and the thickness in the 1-D earth model in the range from 3% to 30% of the parameter values and constructed estimates of confidence regions of the MT and error bars of the source time function (STF) and scalar moment in three frequency bands. Similarly, these error characteristics were determined assuming a mislocation in the hypocenter depth. We found that, in the band of periods from 25 to 50 s, the mechanism is resolved well (at the confidence level 95% at least) up to an earth model uncertainty of 30%, in the passband 10–25 s up to about 10%, but it is undetermined completely at periods of 5–10 s. An error in hypocenter depth of as much as double the value reported by the location procedure does not destroy the resolution of the mechanism at periods above 10 s. In the RMT catalog of the SED, earthquakes of Mw greater than about 3.5 are processed at periods above 30 s; thus, the solutions for these events are robust with respect to a possible uncertainty in the earth model used. Mechanisms of weaker earthquakes, retrieved from short periods, should be interpreted with caution.  相似文献   
23.
24.
The main goal of this work is to critically review the IGS solution products and Precise Point Positioning (PPP) in order to demonstrate their potential to contribute to studies of large earthquakes such as the one that devastated Southeast Asia on December 26th, 2004. In view of a possible detection of the Mw 9.0 Sumatra-Andaman Islands Earthquake of December 26, 2004, position solutions, ranging from intervals of years to one second, of four International GNSS Service (IGS) stations within 3000 km of the epicenter were examined. The IGS combined, cumulative solution product (IGS04P51), consisting of epoch and station velocity solutions and based on data spans of several years prior to the earthquake, was used as a reference. Four IGS combined weekly position solutions (igs04P1301-4), two weeks before and after the earthquake, were utilized for the weekly solution resolution. PPP static and kinematic solutions with IGS Final combined orbits and clocks were used for the mean daily and instantaneous 5-min and 1-sec epoch solutions, respectively. The most significant changes, detected by both weekly and daily solutions occurred in longitude. The nearest IGS station ntus, about 1000 km east of the epicenter, moved westward about 15 mm, while the more distant Indian station iisc (∼ 2300 km NW from the epicenter), shifted about 15 mm eastward. In spite of position errors caused by interpolation of the 5-min IGS clocks, the 1-sec solutions, based on separate data sets, available only for two stations (iisc, dgar), still showed seismic surface waves, in particular at the Indian station iisc. Precise daily IGS combined polar motion and length-of-day products, after correcting for the atmospheric effects, also likely detected, statistically significant, anomalistic excitations on December 26, 2004 that could be caused by this great earthquake.  相似文献   
25.
26.
27.
This paper advocates the use of a multiphase model, already developed for static or quasi‐static geotechnical engineering problems, for simulating the behaviour of piled raft foundations subject to horizontal as well as rocking dynamic solicitations. It is shown that such a model, implemented in a FEM code, yields appropriate predictions for the foundation impedance characteristics, provided that shear and bending effects in the piles are taken into account, thus corroborating the findings of the asymptotic homogenization theory. Besides, it is notably pointed out that such a multiphase‐based computational tool makes it possible to assess the dynamic behaviour of pile groups in a much quicker way than when using direct numerical simulations, which may face oversized problems when large pile groups are concerned. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
28.
Elastic lateral dynamic impedance functions are defined as the ratio of the lateral dynamic force/moment to the corresponding lateral displacement/rotation at the top ending of a foundation at very small strains. Elastic lateral dynamic impedance functions have a defining influence on the natural frequencies of offshore wind turbines supported on cylindrical shell type foundations, such as suction caissons, bucket foundations, and monopiles. This paper considers the coupled horizontal and rocking vibration of a cylindrical shell type foundation embedded in a fully saturated poroelastic seabed in contact with a seawater half‐space. The formulation of the coupled seawater–shell–seabed vibration problem is simplified by treating the shell as a rigid one. The rigid shell vibration problem is approached by the integral equation method using ring‐load Green's functions for a layered seawater‐seabed half‐space. By considering the boundary conditions at the shell–soil interface, the shell vibration problem is reduced to Fredholm integral equations. Through an analysis of the corresponding Cauchy singular equations, the intrinsic singular characteristics of the problem are rendered explicit. With the singularities incorporated into the solution representation, an effective numerical method involving Gauss–Chebyshev method is developed for the governing Fredholm equations. Selected numerical results for the dynamic contact load distributions, displacements of the shell, and lateral dynamic impedance functions are examined for different shell length–radius ratio, poroelastic materials, and frequencies of excitation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
29.
Assuming that the pile variable cross section interacts with the surrounding soil in the same way as the pile toe does with the bearing stratus, the interaction of pile variable cross section with the surrounding soil is represented by a Voigt model, which consists of a spring and a damper connected in parallel, and the spring constant and damper coefficient are derived. Thus, a more rigid pile–soil interaction model is proposed. The surrounding soil layers are modeled as axisymmetric continuum in which its vertical displacements are taken into account and the pile is assumed to be a Rayleigh–Love rod with material damping. Allowing for soil properties and pile defects, the pile–soil system is divided into several layers. By means of Laplace transform, the governing equations of soil layers are solved in frequency domain, and a new relationship linking the impedance functions at the variable‐section interface between the adjacent pile segments is derived using a Heaviside step function, which is called amended impedance function transfer method. On this basis, the impedance function at pile top is derived by amended impedance function transfer method proposed in this paper. Then, the velocity response at pile top can be obtained by means of inverse Fourier transform and convolution theorem. The effects of pile–soil system parameters are studied, and some conclusions are proposed. Then, an engineering example is given to confirm the rationality of the solution proposed in this paper. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
30.
An analytical solution is developed in this paper to investigate the dynamic response of a large‐diameter end‐bearing pipe pile subjected to torsional loading in viscoelastic saturated soil. The wave propagation in saturated soil and pile are simulated by Biot's two‐phased linear theory and one‐dimensional elastic theory, respectively. The dynamic equilibrium equations of the outer soil, inner soil, and pile are established. The solutions for the outer and inner soils in frequency domain are obtained by Laplace transform technique and the separation of variables method. Then, the dynamic response of the pile is obtained on the basis of the perfect contacts between the pile and the outer soil as well as the inner soil. The results in this paper are compared with that of a solid pile in elastic saturated soil to verify the validity of the solution. Furthermore, the solution in this paper is compared with the classic plane strain solution to verify the solution further and check the accuracy of the plane strain solution. Numerical results are presented to analyze the vibration characteristics and illustrate the effect of the soil parameters and the geometry size of the pile on the complex impedance and velocity admittance of the pile head. Finally, the displacement of the soil at different depth and frequency is analyzed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号