首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   875篇
  免费   52篇
  国内免费   106篇
测绘学   7篇
大气科学   40篇
地球物理   173篇
地质学   209篇
海洋学   499篇
天文学   2篇
综合类   29篇
自然地理   74篇
  2023年   3篇
  2022年   14篇
  2021年   20篇
  2020年   24篇
  2019年   41篇
  2018年   10篇
  2017年   20篇
  2016年   29篇
  2015年   30篇
  2014年   49篇
  2013年   52篇
  2012年   22篇
  2011年   46篇
  2010年   69篇
  2009年   79篇
  2008年   97篇
  2007年   74篇
  2006年   60篇
  2005年   55篇
  2004年   31篇
  2003年   29篇
  2002年   27篇
  2001年   22篇
  2000年   18篇
  1999年   8篇
  1998年   16篇
  1997年   9篇
  1996年   9篇
  1995年   6篇
  1994年   3篇
  1993年   7篇
  1992年   6篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1988年   5篇
  1987年   4篇
  1986年   6篇
  1985年   3篇
  1984年   6篇
  1983年   4篇
  1982年   4篇
  1981年   5篇
  1980年   1篇
  1978年   2篇
排序方式: 共有1033条查询结果,搜索用时 93 毫秒
201.
巴布亚湾受澳大利亚板块与太平洋板块高速斜向汇聚的控制,经历了复杂的中、新生代构造演化.前人对巴布亚湾盆地结构构造特征的研究多是局部的、分散的,关于盆地的形成时间和动力学机制仍存在争议.利用覆盖全盆的钻井约束的高精度2D、3D地震资料,精细地刻画了盆地的结构和构造特征,揭示了巴布亚湾发育潘多拉和奥雷两期叠置的前陆盆地.潘多拉前陆盆地是形成于渐新世不整合面之上的晚渐新世-中中新世微型前陆盆地,走向为NNE.奥雷前陆盆地是发育在复杂的裂谷边缘之上的早中新世-现今的周缘前陆盆地,沿着弧形的巴布亚半岛延伸480 km;盆地走向在148°E发生转变,由西部的NW向转为东部的近EW向.潘多拉微前陆盆地被奥雷前陆盆地向南逐渐超覆的沉积地层覆盖,两个前陆盆地走向相互垂直,垂向上形成叠置结构.阐明了巴布亚湾新生代经历三期挤压事件及两期叠置的前陆盆地的形成演化,解决了盆地结构及区域构造演化认识的不足,理清了复杂陆缘环境从伸展到挤压多期构造事件的时序及动力学机制,为澳大利亚板块北缘的板块构造重建提供了盆内证据.  相似文献   
202.
The role of faults in controlling groundwater flow in the Sahara and most of the hyper-arid deserts is poorly understood due to scarcity of hydrological data. The Wadi Araba Basin (WAB), in the Eastern Sahara, is highly affected by folds and faults associated with Senonian tectonics and Paleogene rifting. Using the WAB as a test site, satellite imagery, aeromagnetic maps, field observations, isotopic and geochemical data were examined to unravel the structural control on groundwater flow dynamics in the Sahara. Analysis of satellite imagery indicated that springs occur along structurally controlled scarps. Isotopic data suggested that cold springs in the WAB showed a striking similarity with the Sinai Nubian aquifer system (NAS) water and the thermal springs along the Gulf of Suez (e.g., δ18O = −8.01‰ to −5.24‰ and δD = −53.09‰ to −31.12‰) demonstrating similar recharge sources. The findings advocated that cold springs in the WAB represent a natural discharge from a previously undefined aquifer in the Eastern Desert of Egypt rather than infiltrated precipitation over the plateaus surrounding the WAB or through hydrologic windows from deep crystalline basement flow. A complex role of the geological structures was inferred including: (1) channelling of the groundwater flow along low-angle faults, (2) compartmentalization of the groundwater flow upslope from high-angle faults, and (3) reduction of the depth to the main aquifer in a breached anticline setting, which resulted in cold spring discharge temperatures (13–22°C). Our findings emphasize on the complex role of faults and folds in controlling groundwater flow, which should be taken into consideration in future examination of aquifer response to climate variability in the Sahara and similar deserts worldwide.  相似文献   
203.
Because of the variable, unpredictable nature of many potential nutrient sources for coastal phytoplankton primary production needs in the north-western Gulf of Mexico, benthic regeneration was investigated as a more constant source of nutrients to this ecosystem. Water column ammonia profiles taken at several locations on the south Texas inner-shelf in the last seven years showed peak concentrations in bottom waters. Benthic chamber measurements verified the presence of ammonia fluxes at the mud-water interface in south Texas coastal waters. These fluxes were related to benthic faunal activity as measured by sediment metabolism. Laboratory experiments, designed to test the effect of benthic faunal removal on nutrient regeneration, suggested that the fauna play a role in regulating this process. How this regulation may occur is discussed. It was estimated that annual benthic regeneration rates can supply 69% of the nitrogen required to support phytoplankton primary production in these coastal waters.  相似文献   
204.
The easternmost sector of the Gulf of Corinth, the Beotia area in Central Greece, is an area with active normal faults located between the two major rift structures of Central Greece, the Gulf of Corinth and the North Gulf of Evia. These active normal faults include WNW to E–W and NE to ENE-trending faults affect the landscape and generate basin and range topography within the Beotia. We study four normal fault zones and drainage basin geometry in the easternmost sector of the Gulf of Corinth to document the impact of active tectonics on the landscape evolution. Fault and drainage geometry are investigated based on detailed field mapping and high-resolution digital elevation models. Tectonic geomorphic analysis using several parameters of active tectonics provides information concerning the relative tectonic activity and fault growth. In order to detect areas of lateral stream migration that could indicate recent tectonic activity, the Transverse Topographic Symmetry Factor and the Asymmetry Factor are used to analyse drainage basin geometry in six large drainage basins and a drainage domain covering the study area. Our results show that vertical motions and tilting associated with normal faulting influence the drainage geometry and its development. Values of stream-gradient indices (SL) are relatively high close to the fault traces of the studied fault zones suggesting high activity. Mountain-front sinuosity (Smf) mean values along the fault zones ranges from 1.08 to 1.26. Valley floor width to valley height ratios (Vf) mean values along the studied fault zones range between 0.5 and 1.6. Drainage basin shape (BS) mean values along the fault zones range from 1.08 to 3.54. All these geomorphic parameters and geomorphological data suggest that the analyzed normal faults are highly active. Lateral fault growth was likely produced by primarily eastward propagation, with the WNW to E–W trending faults being the relatively more active structures.  相似文献   
205.
以格陵兰岛西部、冰岛沿海和楚科奇海的芬迪亚历山大藻为受试对象,并以缅因湾的芬迪亚历山大藻藻株做为参照,从沉积物或海水中的休眠孢囊或营养细胞中分离到12株目标藻种,并在实验室建立纯培养系。然后对这些地域的藻种在不同光照下生长特性的比较、对毒素含量进行研究,发现芬迪亚历山大藻在持续光照条件下最适的生长光强范围是38—91μmol×m~(–2)×s~(–1)。另外,在所有分离到的12株藻细胞中均未检测到脱氨甲酰基膝沟藻毒素2(dc GTX2),大部分藻细胞都在光强较强时,即生长速率低时表现出更高的细胞毒素含量和毒性。  相似文献   
206.
Cretaceous strata in Alabama and Mississippi (USA) represent one of the most complete records of shallow marine deposition worldwide for the Upper Cretaceous. The age assignment of these strata in the eastern Gulf Coastal Plain is difficult due to the comparative lack of radiometrically datable beds and sometimes conflicting results of biostratigraphy using different taxonomic groups. Numerical age dating using strontium isotope ratios (87Sr/86Sr) preserved in diagenetically resistant fossil shark tooth enameloid had been proposed by previous researchers as a solution to dating some geologic units. Here we apply this methodology to the whole Upper Cretaceous, using teeth of two fossil shark genera (Scapanorhynchus and Squalicorax) collected from variable facies. Shark teeth collected from a bentonite mine in Monroe County, Mississippi, were also analyzed and compared with the radiometric date of the bentonite layer. Results indicate a strong correlation between stratigraphic position of the fossil teeth and numerical age determination based on 87Sr/86Sr content. Furthermore, this method is equally effective for both of the fossil shark genera analyzed in the study. Because of the nearly uniform distribution of strontium in ocean water, numerical age dating using strontium isotope ratios preserved in fossil shark tooth enameloid can be a useful method to employ in the correlation of marine geological strata on both regional and global scales.  相似文献   
207.
We have examined microstructures, mineralogical composition, geochemical alteration, and texture of four selected fault rock samples from the Deep Geodynamical Laboratory (DGLab) Gulf of Corinth project using optical microscopy, cathodoluminescence microscopy (CL), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and synchrotron X-ray diffraction measurements. The fault core is composed of red and gray clayey gouge material and surrounded by a damage zone of brecciated limestones. Pressure solution features, calcite veins and calcite clasts in the breccia and gouge material attest the presence of paleo-fluids and fluid-driven mass transfer during deformation. Differences in CL-colors between the matrix and calcite vein cement and inside the vein cement suggest repeated infiltration of fluids with different composition from various sources (formation water and meteoric water). Twin lamellae densities estimated in calcite veins are used as paleo-piezometer. The deduced differential stress is ∼140 ± 70 MPa for the older vein generation and appears to be higher than stress for the youngest veins (45 ± 23 MPa). In spite of the relatively small clay content in both samples, newly formed clay minerals have been observed in gray as well as red clayey gouge material. Differences between gray and red clay gouge material are found in fault rock composition, porosity and clay fabric. The proportion of chlorite in the red gouge is significantly less than that in the gray gouge whereas the initial porosity is significantly higher than in the gray gouge material. The detection of a well-oriented clay fabric in red clay gouge samples is unique in comparison to other major fault zones.  相似文献   
208.
Rhodoliths are important marine carbonate producers that provide habitat for several marine organisms, and are threatened by ongoing global climate change. Meter‐sized sedimentary patches rich in living rhodoliths, interspersed among corals, were discovered in the back reef of Ras Ghamila lagoon, Southern Sinai, at less than 1 m water depth. In this shallow and relatively sheltered subtropical environment, rhodoliths were found to be monospecific or oligospecific, spheroidal, 3.5 to 9.4 cm in maximum diameter, with warty/lumpy or fruticose (protuberance degree IV) growth forms, and corresponded to the unattached branches or praline type. They grew in bright light under seasonal, moderate, wind‐driven water motion. The dominant rhodolith‐forming species recorded were: Lithophyllum kotschyanum, Porolithon onkodes, Hydrolithon sp. and three species of Neogoniolithon: Neogoniolithon fosliei, Neogoniolithon brassica‐florida, and an undescribed species noted in the text as Neogoniolithon sp. A total of 38 Alizarin‐stained rhodoliths was released in the field and collected after 1 year. They showed different banding patterns (alternating long and short cells) that revealed seasonal growth, with the lowest rates occurring in winter for all species, and an additional summer growth slackening in Neogoniolithon fosliei. Lithophyllum kotschyanum presented evidence of occasional growth cessation, possibly due to temporary burial. The observed annual growth rate of rhodoliths was unrelated to their size. The mean accretion rates were 1.08 mm · year?1 in L. kotschyanum, 0.75 mm · year?1 in P. onkodes, 0.49 mm · year?1 in Hydrolithon sp., 0.85 mm mm · year?1 in N. fosliei, 0.63 mm · year?1 in N. brassica‐florida and 0.57 mm · year?1 in Neogoniolithon sp. The annual mean marginal elongation rate for these taxa was respectively 8.74, 13.92, 3.59, 9.40 and 9.25 mm · year?1, with the exception of Neogoniolithon sp., for which this parameter was not recorded. Maximum marginal elongation occurred in P. onkodes pointing out its greater ability as a space competitor in comparison with the other rhodolith species. The highest accretion rate and common presence of L. kotschyanum indicate its importance as carbonate producer in tropical reef.  相似文献   
209.
The ecosystem approach to fisheries management (EAFM) methodology is currently considered the preferred option for long-term sustainability of fisheries and ecosystem services and is widely popularised. Manuals, guidelines and training have been given to many nations, but the actual existence and execution of an EAFM plan is rare. The applicability and relevance of biological and socioeconomic tools to follow EAFM planning guidelines in a data absent area were explored in Kalpitiya, northwest Sri Lanka, where there is a population of spinner dolphins that the local community are especially dependent on through tuna-dolphin association fishing and dolphin-watching tourism. This paper provides background to the design and collection of information leading to the formulation of an EAFM management plan. Scoping and the determination of a fishery management area were completed through stakeholder consultations using a combination of interviewer-administered questionnaires, interviews, meetings, dolphin distribution data and existing management plans. Threats and stakeholder prioritisation were compiled and the final agreed fisheries management area covers a total area of 2445 km2 adjacent to the Kalpitiya peninsula. The completed EAFM plan contains 4 goals, 16 actions and 72 sub-actions agreed by stakeholders. It was concluded that both willingness of higher level stakeholders responsible for implementing regulations and working with grass-root level stakeholders are critical in developing a realistic and implementable EAFM plan. This work also highlights how data absence should not remain the bottleneck that hinders moving forward with EAFM approaches.  相似文献   
210.
Intensive hydrographic observations were carried out in the western part of the Gulf of Thailand and the east coastal sea of Peninsular Malaysia in September 1995 and April–May 1996. The characteristics of seasonal variation of oceanic condition in that area are discussed basis of an analysis of observed water temperature, salinity and density distributions in these cruises and NAGA cruises (Yanagi and Takao, 1998a). Stratification is most developed in March–May mainly due to large sea surface heating and weak sea surface wind, which weakened until September–October, vanishing in December–January. The horizontal distribution of bottom cold, saline and heavy water masses, which are found during the stratified season, is governed by the tidal mixing and the water depth. Water exchange between the Gulf of Thailand and the South China Sea becomes large in March–May due to a coupled effect of the intensified estuarine circulation and the Ekman transport by the southwest monsoon. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号