首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2949篇
  免费   660篇
  国内免费   1164篇
测绘学   78篇
大气科学   16篇
地球物理   999篇
地质学   3059篇
海洋学   281篇
天文学   32篇
综合类   130篇
自然地理   178篇
  2024年   24篇
  2023年   45篇
  2022年   78篇
  2021年   167篇
  2020年   174篇
  2019年   135篇
  2018年   125篇
  2017年   127篇
  2016年   129篇
  2015年   169篇
  2014年   198篇
  2013年   276篇
  2012年   167篇
  2011年   205篇
  2010年   226篇
  2009年   195篇
  2008年   218篇
  2007年   192篇
  2006年   264篇
  2005年   177篇
  2004年   196篇
  2003年   172篇
  2002年   123篇
  2001年   122篇
  2000年   123篇
  1999年   115篇
  1998年   109篇
  1997年   100篇
  1996年   91篇
  1995年   60篇
  1994年   40篇
  1993年   61篇
  1992年   36篇
  1991年   22篇
  1990年   15篇
  1989年   19篇
  1988年   10篇
  1987年   14篇
  1986年   7篇
  1985年   8篇
  1984年   7篇
  1980年   3篇
  1977年   3篇
  1976年   3篇
  1975年   1篇
  1974年   2篇
  1973年   7篇
  1972年   3篇
  1971年   5篇
  1954年   1篇
排序方式: 共有4773条查询结果,搜索用时 62 毫秒
971.
Periods of summertime low flows are often critical for fish. This study quantified the impacts of forest clear‐cutting on summertime low flows and fish habitat and how they evolved through time in two snowmelt‐dominant headwater catchments in the southern interior of British Columbia, Canada. A paired‐catchment analysis was applied to July–September water yield, the number of days each year with flow less than 10% of mean annual discharge, and daily streamflow for each calendar day. The postharvest time series were divided into treatment periods of approximately 6–10 years, which were analysed independently to evaluate how the effects of forestry changed through time. An instream flow assessment using a physical habitat simulation‐style approach was used to relate streamflow to the availability of physical habitat for resident rainbow trout. About two decades after the onset of logging and as the extent of logging increased to approximately 50% of the catchments, reductions in daily summertime low flows became more significant for the July–September yield (43%) and for the analysis by calendar day (11–68%). Reductions in summertime low flows were most pronounced in the catchment with the longest postharvest time series. On the basis of the temporal patterns of response, we hypothesize that the delayed reductions in late‐summer flow represent the combined effects of a persistent advance in snowmelt timing in combination with at least a partial recovery of transpiration and interception loss from the regenerating forests. These results indicate that asymptotic hydrological recovery as time progresses following logging is not suitable for understanding the impacts of forest harvesting on summertime low flows. Additionally, these reductions in streamflow corresponded to persistent decreases in modelled fish habitat availability that typically ranged from 20% to 50% during the summer low‐flow period in one of the catchments, suggesting that forest harvest may have substantial delayed effects on rearing salmonids in headwater streams.  相似文献   
972.
The problem of discharge forecasting using precipitation as input is still very active in Hydrology, and has a plethora of approaches to its solution. But, when the objective is to simulate discharge values without considering the phenomenology behind the processes involved, Artificial Neural Networks, ANN give good results. However, the question of how the black box internally solve this problem remains open. In this research, the classical rainfall-runoff problem is approached considering that the total discharge is a sum of components of the hydrological system, which from the ANN perspective is translated to the sum of three signals related to the fast, middle and slow flow. Thus, the present study has two aims (a) to study the time-frequency representation of discharge by an ANN hydrologic model and (b) to study the capabilities of ANN to additively decompose total river discharge. This study adds knowledge to the open problem of the physical interpretability of black-box models, which remains very limited. The results show that total discharge is adequately simulated in the time frequency domain, although less power spectrum is evident during the rainy seasons in the ANN model, due to fast flow underestimation. The wavelet spectrum of discharge represents well the slow, middle and fast flow components of the system with transit times of 256, 12–64 and 2–12 days, respectively. Interestingly, these transit times are remarkably similar to those of the soil water reservoirs of the studied system, a small headwater catchment in the tropical Andes. This result needs further research because it opens the possibility of determining MMT on a fraction of the cost of isotopic based methods. The cross-power spectrum indicates that the error in the simulated discharge is more related to the misrepresentation of the fast and the middle flow components, despite limitations in the recharge period of the slow flow component. With respect to the representation of individual signals of the slow, middle and fast flows components, the three neurons were uncapable to individually represent such flows. However, the combination of pairs of these signals resemble the dynamics and the spectral content of the aforementioned flows signals. These results show some evidence that signal processing techniques may be used to infer information about the hydrological functioning of a basin.  相似文献   
973.
There has, in recent years, been an increasing interest in developing nutrient load mitigation measures focussing on tile drains. To plan the location of such tile drain measures, it is important to know where in the landscape drain flow is generated and to understand the key factors governing drain flow dynamics. In the present study, we test two approaches to assess spatial patterns in drain flow generation and thereby assess the importance of including geological information. The approaches are the widely used topographical wetness index (TWI), based solely on elevation data, and hydrological models that include the subsurface geology. We set‐up an ensemble of 20 hydrological models based on 20 stochastically generated geological models to predict drain flow dynamics in the clay till Norsminde catchment in Denmark and test the results against TWI. We find that the hydrological models predict observed daily drain flow reasonably well. High drain flow volumes were found in stream valleys and in wetlands and lower drain flow volumes in the more hilly parts of the catchment. In spite of the apparent connection to the landscape, there was no statistically significant correlation between TWI and drain flow at grid scale (100 × 100 m). TWI was therefore not found to be a sufficient index on its own to assess where drain flow is generated, especially in the highlands of the catchment. The geology below 3 m was found to have a large impact on the drain flow, and correlations between sand percentage in the subsurface geology and drain flow volume were found to be statistically significant. Geological uncertainty therefore give rise to uncertainty on simulated drain flow, and this uncertainty was found to be high at the model grid scale but decreasing with increasing scale.  相似文献   
974.
Warming in the Arctic is occurring at twice the rate of the global average, resulting in permafrost thaw and a restructuring of the Arctic hydrologic cycle as indicated by increased stream discharge during low-flow periods. In these cold regions, permafrost thaw is postulated to increase low-flow discharge, or baseflow, through either: (a) localized increases in groundwater storage and discharge to streams due to increased aquifer transmissivity from thickening of the freeze–thaw layer above permafrost known as the active layer or (b) long-term increases in regional groundwater circulation via enhancement of groundwater–surface water interactions due to extensive permafrost loss over decades. While increasing baseflow has been observed throughout northern Eurasia, the precise mechanistic causes remain elusive. In this study, we differentiate between where these two subsurface physical mechanisms of baseflow increase are occurring by performing a baseflow recession analysis using daily streamflow records from 1913 to 2003 for 139 stations in northern Eurasia underlain by varying permafrost areal extents. Results indicate that from 1913 to 2003, the majority of catchments underlain by continuous permafrost have an increasing trend in their recession flow intercepts, a proxy for increasing active layer thickness. Alternatively, the majority of catchments underlain by permafrost types that are less spatially extensive (e.g., discontinuous, sporadic, isolated, or no permafrost) have decreasing trends in their recession flow intercepts, indicating that a potential increase in active layer thickness is not the driving factor of baseflow variations in these catchments. This may indicate that in catchments underlain by continuous permafrost, active layer thickening correlates with increases in baseflow, whereas, in other catchments with less extensive permafrost, increases in baseflow may be caused by wholesale permafrost loss and vertical talik expansion that enhances regional groundwater circulation. The results of this work may inform our understanding of the subsurface mechanisms responsible for the changing Arctic hydrologic cycle.  相似文献   
975.
976.
Quantifying the spatial variability of species-specific tree transpiration across hillslopes is important for estimating watershed-scale evapotranspiration (ET) and predicting spatial drought effects on vegetation. The objectives of this study are to (1) assess sap flux density (Js) and tree-level transpiration (Ts) across three contrasting zones a (riparian buffer, mid-hillslope and upland-hillslope, (2) determine how species-specific Js responds to vapour pressure deficit (VPD) and (3) estimate watershed-level transpiration (Tw) using Ts derived from each zone. During 2015 and 2016, we measured Js in eight tree species in the three topographic zones in a small 12-ha forested watershed in the Piedmont region of central North Carolina. In the dry year of 2015, loblolly pine (Pinus taeda), Virginia pine (Pinus virginiana) and sweetgum (Liquidambar styraciflua) Js rates were significantly higher in the riparian buffer when compared to the other two zones. In contrast, Js rates in tulip poplar (Liriodendron tulipifera) and red maple (Acer rubrum) were significantly lower in the buffer than in the mid-hillslope. Daily Ts varied by zone and ranged from 10 to 93 L/day in the dry year and from 9 to 122 L/day in the wet year (2016). Js responded nonlinearly to VPD in all species and zones. Annual Tw was 447, 377 and 340 mm based on scaled-Js data for the buffer, mid-hillslope and upland-hillslope, respectively. We conclude that large spatial variability in Js and scaled Tw was driven by differences in soil moisture at each zone and forest composition. Consequently, spatial heterogeneity of vegetation and soil moisture must be considered when accurately quantifying watershed level ET.  相似文献   
977.
While considerable research has established the impacts of urbanization on streamflow, there has been little emphasis on how intra-annual variations in streamflow can deepen the understanding of hydrological processes in urban watersheds. This study fills this critical research gap by examining, at the monthly scale, correlations between land-cover and streamflow, differences in streamflow metrics between urban and rural watersheds, and the potential for the inflow and infiltration (I&I) of extraneous water into sewers to reduce streamflow. We use data from 90 watersheds in the Atlanta, GA region over the 2013–2019 period to accomplish our objectives. Similar to other urban areas in temperate climates, Atlanta has a soil-water surplus in winter and a soil-water deficit in summer. Our results show urban watersheds have less streamflow seasonality than do rural watersheds. Compared to rural watersheds, urban watersheds have a much larger frequency of high-flow days during July–October. This is caused by increased impervious cover decreasing the importance of antecedent soil moisture in producing runoff. Urban watersheds have lower baseflows than rural watersheds during December–April but have baseflows equal to or larger than baseflows in rural watersheds during July–October. Intra-annual variations in effluent data from wastewater treatment plants provide evidence that I&I is a major cause of the relatively low baseflows during December–April. The relatively high baseflows in urban watersheds during July–October are likely caused by reduced evapotranspiration and the inflow of municipal water. The above seasonal aspects of urban effects on streamflow should be applicable to most urban watersheds with temperate climates.  相似文献   
978.
979.
In this study, we developed the urban ecohydrology model (UEM) to investigate the role of bioretention on watershed water balance, runoff production, and streamflow variability. UEM partitions the land surface into pervious, impervious, and bioretention cell fractions. Soil moisture and vegetation dynamics are simulated in pervious areas and bioretention cells using a lumped ecohydrological approach. Bioretention cells receive runoff from a fraction of impervious areas. The model is calibrated in an urban headwater catchment near Seattle, WA, USA, using hourly weather data and streamflow observations for 3 years. The calibrated model is first used to investigate the relationship between streamflow variability and bioretention cell size that receives runoff from different values of impervious area in the watershed. Streamflow variability is quantified by 2 indices, high pulse count (HPC), which quantifies the number of flow high pulses in a water year above a threshold, and high pulse range (HPR), which defines the time over which the pulses occurred. Low values of these indices are associated with improved stream health. The effectiveness of the modelled bioretention facilities are measured by their influence on reducing HPC and HPR and on flow duration curves in comparison with modelled fully forested conditions. We used UEM to examine the effectiveness of bioretention cells under rainfall regimes that are wetter and drier than the study area in an effort to understand linkages between the degree of urbanization, climate, and design bioretention cell size to improve inferred stream health conditions. In all model simulations, limits to the reduction of HPC and HPR indicators were reached as the size of bioretention cells grew. Bioretention was more effective as the rainfall regime gets drier. Results may guide bioretention design practices and future studies to explore climate change impacts on bioretention design and management.  相似文献   
980.
The role of faults in controlling groundwater flow in the Sahara and most of the hyper-arid deserts is poorly understood due to scarcity of hydrological data. The Wadi Araba Basin (WAB), in the Eastern Sahara, is highly affected by folds and faults associated with Senonian tectonics and Paleogene rifting. Using the WAB as a test site, satellite imagery, aeromagnetic maps, field observations, isotopic and geochemical data were examined to unravel the structural control on groundwater flow dynamics in the Sahara. Analysis of satellite imagery indicated that springs occur along structurally controlled scarps. Isotopic data suggested that cold springs in the WAB showed a striking similarity with the Sinai Nubian aquifer system (NAS) water and the thermal springs along the Gulf of Suez (e.g., δ18O = −8.01‰ to −5.24‰ and δD = −53.09‰ to −31.12‰) demonstrating similar recharge sources. The findings advocated that cold springs in the WAB represent a natural discharge from a previously undefined aquifer in the Eastern Desert of Egypt rather than infiltrated precipitation over the plateaus surrounding the WAB or through hydrologic windows from deep crystalline basement flow. A complex role of the geological structures was inferred including: (1) channelling of the groundwater flow along low-angle faults, (2) compartmentalization of the groundwater flow upslope from high-angle faults, and (3) reduction of the depth to the main aquifer in a breached anticline setting, which resulted in cold spring discharge temperatures (13–22°C). Our findings emphasize on the complex role of faults and folds in controlling groundwater flow, which should be taken into consideration in future examination of aquifer response to climate variability in the Sahara and similar deserts worldwide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号