首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3685篇
  免费   906篇
  国内免费   1325篇
测绘学   207篇
大气科学   398篇
地球物理   1154篇
地质学   2792篇
海洋学   673篇
天文学   100篇
综合类   226篇
自然地理   366篇
  2024年   18篇
  2023年   58篇
  2022年   137篇
  2021年   157篇
  2020年   182篇
  2019年   207篇
  2018年   181篇
  2017年   192篇
  2016年   225篇
  2015年   237篇
  2014年   286篇
  2013年   322篇
  2012年   270篇
  2011年   298篇
  2010年   210篇
  2009年   278篇
  2008年   257篇
  2007年   277篇
  2006年   276篇
  2005年   238篇
  2004年   211篇
  2003年   178篇
  2002年   180篇
  2001年   139篇
  2000年   156篇
  1999年   138篇
  1998年   123篇
  1997年   109篇
  1996年   67篇
  1995年   58篇
  1994年   54篇
  1993年   43篇
  1992年   27篇
  1991年   24篇
  1990年   20篇
  1989年   19篇
  1988年   14篇
  1987年   9篇
  1986年   12篇
  1985年   13篇
  1984年   5篇
  1983年   5篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
排序方式: 共有5916条查询结果,搜索用时 609 毫秒
821.
Soil erosion is an important component of the global carbon cycle. However, little attention has been given to the role of aeolian processes in influencing soil organic carbon (SOC) flux and the release of greenhouse gasses, such as carbon dioxide (CO2), to the atmosphere. Understanding the magnitude and mechanisms of SOC enrichment in dust emissions is necessary to evaluate the impact of wind erosion on the carbon cycle. This research examines the SOC content and enrichment of dust emissions measured using Big Spring Number Eight (BSNE) wind‐vane samplers across five land types in the rangelands of western Queensland, Australia. Our results show that sandy soils and finer particulate quartz‐rich soils are more efficient at SOC emission and have larger SOC dust enrichment than clay‐rich aggregated soils. The SOC enrichment ratios of dusts originating from sites with sand‐rich soil ranged from 2·1–41·9, while the mean enrichment ratio for dusts originating from the clay soil was 2·1. We hypothesize that stronger inter‐particle bonds and the low grain density of the aggregated clay soil explain its reduced capacity to release SOC during saltation, relative to the particulate sandy soils. We also show that size‐selective sorting of SOC during transport may lead to further enrichment of SOC dust emissions. Two dust samples from regional transport events were found to contain 15–20% SOC. These preliminary results provide impetus for additional research into dust SOC enrichment processes to elucidate the impact of wind erosion on SOC flux and reduce uncertainty about the role of soil erosion in the global carbon cycle. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
822.
ABSTRACT

Floodplains are composed of complex depositional patterns of ancient and recent stream sediments, and research is needed to address the manner in which coarse floodplain materials affect stream–groundwater exchange patterns. Efforts to understand the heterogeneity of aquifers have utilized numerous techniques typically focused on point-scale measurements; however, in highly heterogeneous settings, the ability to model heterogeneity is dependent on the data density and spatial distribution. The objective of this research was to investigate the correlation between broad-scale methodologies for detecting heterogeneity and the observed spatial variability in stream/groundwater interactions of gravel-dominated alluvial floodplains. More specifically, this study examined the correlation between electrical resistivity (ER) and alluvial groundwater patterns during a flood event at a site on Barren Fork Creek, in the Ozark ecoregion of Oklahoma, USA, where chert gravels were common both as streambed and as floodplain material. Water table elevations from groundwater monitoring wells for a flood event on 1–5 May 2009 were compared to ER maps at various elevations. Areas with high ER matched areas with lower water table slope at the same elevation. This research demonstrated that ER approaches were capable of indicating heterogeneity in surface water–groundwater interactions, and that these heterogeneities were present even in an aquifer matrix characterized as highly conductive. Portions of gravel-dominated floodplain vadose zones characterized by high hydraulic conductivity features can result in heterogeneous flow patterns when the vadose zone of alluvial floodplains activates during storm events.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR X. Chen  相似文献   
823.
The widespread preference for rockbolts in providing adequate rock stability in underground mines and man-made cavities make it necessary to obtain a better understanding of the response of these support systems. It is widely accepted that the fully grouted rockbolts provide better roof stability in areas of very poor roof condition which may be caused by high ground stress conditions. There is little information about the in situ behavior of these systems especially under dynamic loading. Hence, to study the behavior of fully grouted rockbolts under dynamic loading, a numerical modeling study was conducted using the FLAC3D code. In this study the behavior of three types of fully grouted rockbolts were compared with each other including rockbolts with and without head plate and a yielding type one. The results of analyses indicated that under dynamic loading the fully grouted rockbolts without the head plate are incapable of controlling the rock mass movement. Although fully grouted rockbolts with head plate damp a considerable amount of the dynamic energy through friction as these bolts slide within the grout, but the elongation of the rockbolt is not possible due to the rapid breakage of the rockbolt–grout interface. Yielding rockbolts are the best choice for the absorption of the dynamic stress wave and controlling of the rock mass movement. The obtained results show that the optimal design of yielding rockbolt should be in such a way that after dynamic loading, anchoring part of bolt has a limited movement to prevent stress concentration in the shaft of rockbolt and its breakage.  相似文献   
824.
The importance of glacigenic dust in the Earth's system during glacial periods is widely acknowledged. Under contemporary conditions, the world's largest dust sources are in low‐lying, hot, arid regions and this is where most aeolian research is focused. However the processes of dust production and emissions are still operating in cold climate regions, particularly in proglacial areas. This paper assesses current understanding of the relationship between glacierised landscapes and dust emissions and inputs to the global dust cycle. It focuses on how elements in the glacial and aeolian geomorphic sub‐systems interact to determine the magnitude, frequency and timing of aeolian dust emissions, and on feedback mechanisms between the systems. Where they have been measured, dust emission intensity and deposition rates in glacierised catchments are very high, in some cases far exceeding those in lower latitudes, however, few studies span long time scales. The impact of future glacier retreat on the balance between sediment supply, availability and aeolian transport capacity and implications for glacigenic dust emissions is also considered. This balance depends on relative spatial and temporal changes in meltwater suspended sediment concentration and wind strengths, which promote dust emissions, and patterns and rates of soil development and vegetation succession on recently‐deglaciated terrain which protect sediments from deflation. Retreat of the Antarctic ice sheet could mean that in future glacigenic contributions to the dust cycle exceed those of non‐glacigenic sources in the southern hemisphere. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
825.
Abstract

Soil water content (θ) and saturated hydraulic conductivity (Ks) vary in space. The objective of this study was to examine the effects of initial soil water content (θi) and Ks variability on runoff simulations using the LImburg Soil Erosion Model (LISEM) in a small watershed in the Chinese Loess Plateau, based on model parameters derived from intensive measurements. The results showed that the total discharge (TD) and peak discharge (PD) were underestimated when the variability of θi and Ks was partially considered or completely ignored compared with those when the variability was fully considered. Time to peak (TP) was less affected by the spatial variability compared to TD and PD. Except for TP in some cases, significant differences were found in all hydrological variables (TD, PD and TP) between the cases in which spatial variability of θi or Ks was fully considered and those in which spatial variability was partially considered or completely ignored. Furthermore, runoff simulations were affected more strongly by Ks variability than by θi variability. The degree of spatial variability influences on runoff simulations was related to the rainfall pattern and θi. Greater rainfall depth and instantaneous rainfall intensity corresponded to a smaller influence of the spatial variability. Stronger effects of the θi variability on runoff simulation were found in wetter soils, while stronger effects of the Ks variability were found in drier soils. For accurate runoff simulation, the θi variability can be completely ignored in cases of a 1-h duration storm with a return period greater than 10 years, while Ks variability should be fully considered even in the case of a 1-h duration storm with a return period of 20 years.
Editor D. Koutsoyiannis; Associate editor A. Fiori  相似文献   
826.
《水文科学杂志》2013,58(1):90-100
Abstract

In the past 50 years, influenced by global climate change, the East Asian summer monsoon intensity (SMI) changed significantly, leading to a response by the water cycle of the Yellow River basin. The variation in SMI has three stages: (1) 1951–1963, SMI increased; (2) 1963–1965, SMI declined sharply, a feature that may be regarded as an abrupt change; and (3) 1965–2000, SMI remained at low levels and showed a tendency to decline slowly. The decreased SMI led to a reduction in water vapour transfer from the ocean to the Yellow River basin, and thus precipitation decreased and the natural river runoff of the Yellow River also decreased. Due to the increase in population and therefore in irrigated land area, the ratio of net water diversion to natural river runoff increased continuously. Comparison of the ratio of net water diversion to natural river runoff before and after the abrupt change in SMI indicates some discontinuity in the response of the man-induced lateral branch of the water cycle to the abrupt change in SMI. The frequently occurring flow desiccation in the lower Yellow River can be regarded as a response of the water cycle system to the decreasing summer monsoon intensity and increasing population. When the ratio of net water diversion exceeded the ratio of natural runoff of the low-flow season to the annual total natural runoff, flow desiccation in the lower Yellow River would occur. When the ratio of net water diversion is 0.3 larger than the ratio of the natural runoff of the low-flow season to the annual total natural runoff, an abrupt increase in the number of flow desiccation events is likely to occur.  相似文献   
827.
《水文科学杂志》2013,58(4):700-712
Abstract

The groundwater flow equation governing the elevation (h) of the steady-state phreatic surface in a sloping aquifer fed by constant recharge over a bi-circular sector is rhh′ ? r 2 Bh′ + Pr 2 ? PR 2 = 0, where r is the radial coordinate, P is a constant involving recharge and aquifer properties, and B is the slope of the aquifer—bedrock boundary. The derived flow equation describes radially convergent flow through a sloping aquifer that discharges to a water body of fixed head. One important simplification is that in which the width of the bi-circular sector is constant, and the draining land becomes a rectangular aquifer. The bi-circular sector and rectangular-strip groundwater flow problems are solved in terms of implicit equations. The solutions for the steady-state phreatic surfaces depend on the ratio of recharge to hydraulic conductivity, the slope of the aquifer-bedrock, and the downstream constant-head boundary. Computational examples illustrate the application of the solutions.  相似文献   
828.
《水文科学杂志》2013,58(4):655-664
Abstract

Palaeohydraulic modelling is presented for Athabasca Vallis, the youngest known catastrophic flood channel on Mars. This modelling incorporates three significant advantages over previous modelling of Martian channels: a step-backwater hydraulic model; more accurate topography; and improved flood height indicators. The maximum modelled palaeodischarge is between 1 × 106 and 2 × 106m3s?1 depending on the friction coefficient selected. An anomalously high palaeostage indicator suggests a region of ponded backwater in the channel in which streamlined forms were created through deposition, with the additional possibility of post-flood subsidence/lowering of the channel slope due to magma extrusion.  相似文献   
829.
《水文科学杂志》2013,58(2):387-400
Abstract

The effects of spatial variation of the saturated hydraulic conductivity (K s ) of the soil on the variation of overland flow were tested by analysing 2000 synthetic rainfall—runoff events, all generated from real, observed rainfall events but with runoff modelled by a two-dimensional distributed model using different spatially variable K s fields in a small (12 ha) agricultural catchment. The purpose is to determine the influence of spatial variation in K s on runoff generation. The statistical measures used to describe the variation in the generated K s were its coefficient of variation and correlation length. Both of these had two levels of typical values obtained from field measurements in other studies. The storms were analysed at a general event level, first using simple graphical and statistical methods and then using analysis of variance (ANOVA). The observed scale of the spatial variation of K s does cause statistically significant variation in overland flow. The graphical analysis showed that the first flow peak in a multi-event storm had the largest variation and that differences were greater in the rising part of the hydrograph than in its recession. The greatest variation in overland flow was produced by the combination of the greater coefficient of variation and the longer correlation lengths. The smallest variation in overland flow was produced by the combination of the smaller coefficient of variation and the shorter correlation lengths. ANOVA showed that the coefficient of variation and correlation length alone did not explain all the variation of the total flow. ANOVA was not very useful due to the many restrictive assumptions that were not satisfied by the nature of the data and therefore analysis methods with less restrictive assumptions need to be tested.  相似文献   
830.
北半球环状模周期变化和突变研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用NOAA提供的1871-2008年月平均海平面气压场、雪盖、海冰等再分析资料、NASA提供的地表温度场资料、太平洋年代际振荡(PDO)指数,采用小波分析、带通滤波和凝聚谱分析等方法,研究了北半球环状模(NAM)周期变化及其影响因子.研究结果表明NAM在20世纪60年代前后发生了显著的年代际尺度周期突变,NAM在1895-1955年存在显著的准35年周期振荡,而在1971-2008年则主要以准15年周期振荡为主.NAM年代际尺度周期突变与外强迫源振荡周期变化有关,但突变前后与NAM周期振荡密切相关的外强迫因子并不尽相同.在1960年代之前,PDO、ATM、北美雪盖以及南极海冰涛动等外源强迫因子与NAM在准35年尺度上关系密切;而在1960年之后,NAM准15年振荡则与ATM和欧洲雪盖、南极海冰涛动等因素有关.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号