首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1789篇
  免费   564篇
  国内免费   733篇
测绘学   71篇
大气科学   19篇
地球物理   839篇
地质学   1712篇
海洋学   266篇
天文学   3篇
综合类   84篇
自然地理   92篇
  2024年   12篇
  2023年   28篇
  2022年   51篇
  2021年   65篇
  2020年   106篇
  2019年   126篇
  2018年   121篇
  2017年   118篇
  2016年   143篇
  2015年   143篇
  2014年   160篇
  2013年   202篇
  2012年   135篇
  2011年   163篇
  2010年   119篇
  2009年   131篇
  2008年   131篇
  2007年   138篇
  2006年   166篇
  2005年   127篇
  2004年   98篇
  2003年   92篇
  2002年   88篇
  2001年   54篇
  2000年   66篇
  1999年   61篇
  1998年   49篇
  1997年   40篇
  1996年   30篇
  1995年   21篇
  1994年   22篇
  1993年   19篇
  1992年   12篇
  1991年   15篇
  1990年   11篇
  1989年   4篇
  1988年   4篇
  1987年   5篇
  1986年   3篇
  1985年   5篇
  1984年   1篇
  1977年   1篇
排序方式: 共有3086条查询结果,搜索用时 578 毫秒
121.
利用台风“利奇马”过境浙江期间,岱山地震台、东阳地震台钻孔体应变数据,采用数据滤波和线性回归等方法,分析了这2个台站钻孔体应变对台风的响应特征。结果表明,东阳地震台受台风引起的低气压的影响,钻孔体应变与气压同步变化;而岱山地震台受低气压和降水的共同影响,钻孔体应变与气压在变化的相关性和同步性上均有差异。气压和降水导致钻孔体应变的变化量可以通过负载力学模型进行估算求解。  相似文献   
122.
New in situ data based on hydraulic fracturing and overcoring have been compiled for eastern Australia, increasing from 23 to 110 the number of in situ stress analyses available for the area between and including the Bowen and Sydney Basins. The Bowen Basin displays a consistent north‐northeast maximum horizontal stress (σH) orientation over some 500 km. Stress orientations in the Sydney Basin are more variable than in the Bowen Basin, with areas of the Sydney Basin exhibiting north‐northeast, northeast, east‐west and bimodal σH orientations. Most new data indicate that the overburden stress (σV) is the minimum principal stress in both the Bowen and Sydney Basins. The Sydney Basin is relatively seismically active, whereas the Bowen Basin is relatively aseismic. Despite the fact that in situ stress measurements sample the stress field at shallower depth than the seismogenic zone, there is a correlation between the stress measurements and seismicity in the two areas. Mohr‐Coulomb analysis of the propensity for failure in the Sydney Basin suggests 41% of the new in situ stress data are indicative of failure, as opposed to 13% in the Bowen Basin. The multiple pre‐existing structural grains in the Sydney Basin further emphasise the difference between propensity for failure in the two areas. Previous modelling of intraplate stresses due to plate boundary forces has been less successful at predicting stress orientations in eastern than in western and central Australia. Nonetheless, stress orientation in the Bowen Basin is consistent with that predicted by modelling of stresses due to plate boundary forces. Variable stress orientations in the Sydney Basin suggest that more local sources of stress, such as those associated with the continental margin and with local structure, significantly influence stress orientation. The effect of local sources of stress may be relatively pronounced because stresses due to plate boundary forces result in low horizontal stress anisotropy in the Sydney Basin.  相似文献   
123.
This paper describes a soil‐structure coupling method to simulate blast loading in soil and structure response. For the last decade, simulation of soil behavior under blast loading and its interaction with semi buried structure in soil becomes the focus of computational engineering in civil and mechanical engineering communities. In current design practice, soil‐structure interaction analysis often assumes linear elastic properties of the soil and uses small displacement theory. However, there are numerous problems, which require a more advanced approach that account for soil‐structure interaction and appropriate constitutive models for soil. In simplified approaches, the effect of soil on structure is considered using spring‐dashpot‐mass system, and the blast loading is modeled using linearly decaying pressure–time history based on equivalent trinitrotoluene and standoff distance, using ConWep, a computer program based on semi‐empirical equations. This strategy is very efficient from a CPU time computing point of view but may not provide accurate results for the dynamic response of the structure, because of its significant limitations, mainly when soil behavior is strongly nonlinear and when the buried charge is close to the structure. In this paper, both soil and explosive are modeled using solid elements with a constitutive material law for soil, and a Jones–Wilkins–Lee equation of state for explosive. One of the problems we have encountered when solving fluid structure interaction problems is the high mesh distortion at the contact interface because of high fluid nodal displacements and velocities. Similar problems have been encountered in soil structure interaction problems. To prevent high mesh distortion for soil, a new coupling algorithm is performed at the soil structure interface for structure loading. The coupling method is commonly used for fluid structure interaction problems in automotive and aerospace industry for fuel sloshing tank, and bird impact problems, but rarely used for soil structure interaction problems, where Lagrangian contact type algorithms are still dominant. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
124.
This paper presents the closed‐form solutions for the elastic fields in two bonded rocks induced by rectangular loadings. Each of the two bonded rocks behaves as a transversely isotropic linear elastic solid of semi‐infinite extent. They are completely bonded together at a horizontal surface. The rectangular loadings are body forces along either vertical or horizontal directions and are uniformly applied on a rectangular area. The rectangular area is embedded in the two bonded rocks and is parallel to the horizontal interface. The classical integral transforms are used in the solution formulation, and the elastic solutions are expressed in the forms of elementary harmonic functions for the rectangular loadings. The stresses and displacements in the rocks induced by both the horizontal and vertical body forces are also presented. The numerical results illustrate the important effect of the anisotropic bimaterial properties on the stress and displacement fields. The solutions can be easily implemented for numerical calculations and applied to problems encountered in rock mechanics and engineering. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
125.
Propagation of fractures, especially those emanating from wellbores and closed natural fractures, often involves Mode I and Mode II, and at times Mode III, posing significant challenges to its numerical simulation. When an embedded inclined fracture is subjected to compression, the fracture edge is constrained by the surrounding materials so that its true propagation pattern cannot be simulated by 2D models. In this article, a virtual multidimensional internal bond (VMIB) model is presented to simulate three‐dimensional (3D) fracture propagation. The VMIB model bridges the processes of macro fracture and micro bond rupture. The macro 3D constitutive relation in VMIB is derived from the 1D bond in the micro scale and is implemented in a 3D finite element method. To represent the contact and friction between fracture surfaces, a 3D element partition method is employed. The model is applied to simulate fracture propagation and coalescence in typical laboratory experiments and is used to analyze the propagation of an embedded fracture. Simulation results for single and multiple fractures illustrate 3D features of the tensile and compressive fracture propagation, especially the propagation of a Mode III fracture. The results match well with the experimental observation, suggesting that the presented method can capture the main features of 3D fracture propagation and coalescence. Moreover, by developing an algorithm for applying pressure on the fracture surfaces, propagation of a natural fracture is also simulated. The result illustrates an interesting and important phenomenon of Mode III fracture propagation, namely the fracture front segmentation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
126.
In organic soils, hydraulic conductivity is related to the degree of decomposition and soil compression, which reduce the effective pore diameter and consequently restrict water flow. This study investigates how the size distribution and geometry of air‐filled pores control the unsaturated hydraulic conductivity of peat soils using high‐resolution (45 µm) three‐dimensional (3D) X‐ray computed tomography (CT) and digital image processing of four peat sub‐samples from varying depths under a constant soil water pressure head. Pore structure and configuration in peat were found to be irregular, with volume and cross‐sectional area showing fractal behaviour that suggests pores having smaller values of the fractal dimension in deeper, more decomposed peat, have higher tortuosity and lower connectivity, which influences hydraulic conductivity. The image analysis showed that the large reduction of unsaturated hydraulic conductivity with depth is essentially controlled by air‐filled pore hydraulic radius, tortuosity, air‐filled pore density and the fractal dimension due to degree of decomposition and compression of the organic matter. The comparisons between unsaturated hydraulic conductivity computed from the air‐filled pore size and geometric distribution showed satisfactory agreement with direct measurements using the permeameter method. This understanding is important in characterizing peat properties and its heterogeneity for monitoring the progress of complex flow processes at the field scale in peatlands. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
127.
In river bank filtration, impurities present in the river water travel with the bank filtrate towards the pumping well. During this passage, certain types of impurities, such as turbidity, total coliform, and so forth, may get attenuated; however, it is interesting to note that some of the instant raw river water quality parameters, such as alkalinity and electrical conductivity, increase after the passage of water through the porous medium. This occurs because water, when passing through the soil pores, absorbs many of the solutes that cause an increase in alkalinity and electrical conductivity. Measurements at a river bank filtration site for a year showed that alkalinity of 116–32 mg l?1 in river water increased to 222.4–159.9 mg l?1 in the river bank filtered water. Likewise, the electrical conductivity increased from 280–131 μS cm?1 to 462–409.6 μS cm?1. This study uses a probabilistic approach for investigating the variation of alkalinity and electrical conductivity of source water that varies with the natural logarithm of the concentration of influent water. The probabilistic approach has the potential of being used in simulating the variation of alkalinity and electrical conductivity in river bank filtrate. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
128.
This paper presents a finite‐element (FE) model for simulating injection well testing in unconsolidated oil sands reservoir. In injection well testing, the bottom‐hole pressure (BHP) is monitored during the injection and shut‐in period. The flow characteristics of a reservoir can be determined from transient BHP data using conventional reservoir or well‐testing analysis. However, conventional reservoir or well‐testing analysis does not consider geomechanics coupling effects. This simplified assumption has limitations when applied to unconsolidated (uncemented) oil sands reservoirs because oil sands deform and dilate subjected to pressure variation. In addition, hydraulic fracturing may occur in unconsolidated oil sands when high water injection rate is used. This research is motivated in numerical modeling of injection well testing in unconsolidated oil sands reservoir considering the geomechanics coupling effects including hydraulic fracturing. To simulate the strong anisotropy in mechanical and hydraulic behaviour of unconsolidated oil sands induced by fluid injection in injection well testing, a nonlinear stress‐dependent poro‐elasto‐plastic constitutive model together with a strain‐induced anisotropic permeability model are formulated and implemented into a 3D FE simulator. The 3D FE model is used to history match the BHP response measured from an injection well in an oil sands reservoir. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
129.
This article presents a method for the nonlinear analysis of laterally loaded rigid piles in cohesive soil. The method considers the force and the moment equilibrium to derive the system equations for a rigid pile under a lateral eccentric load. The system equations are then solved using an iteration scheme to obtain the response of the pile. The method considers the nonlinear variation of the ultimate lateral soil resistance with depth and uses a new closed‐form expression proposed in this article to determine the lateral bearing factor. The method also considers the horizontal shear resistance at the pile base, and a bilinear relationship between the shear resistance and the displacement is used. For simplicity, the modulus of horizontal subgrade reaction is assumed to be constant with depth, which is applicable to piles in overconsolidated clay. The nonlinearity of the modulus of horizontal subgrade reaction with pile displacement at ground surface is also considered. The validity of the developed method is demonstrated by comparing its results with those of 3D finite element analysis. The applications of the developed method to analyze five field test piles also show good agreement between the predictions and the experimental results. The developed method offers an alternative approach for simple and effective analysis of laterally loaded rigid piles in cohesive soil. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
130.
Abstract

A numerical technique is presented whereby aquifer hydraulic diffusivities (D) and macrodispersivities (α) are calculated by linear equations rewritten from flow and solute transport differential equations. The approach requires a GIS to calculate spatial and temporal hydraulic head (h) and solute concentration gradients. The model is tested in Portugal, in a semi-confined aquifer periodically monitored for h and chloride/sulphate concentrations. Average D (0.46 m2/s) and α (1975 m) compare favourably with literature results. The relationship between α and scale (L) is also investigated. In this context, two aquifer groups could be identified: the first group is heterogeneous at the “macroscopic” scale (solute travelled distances <1 km), but homogeneous at the “megascopic” scale. The overall scale dependency in this case is given by an equation of logarithmic type. The second group is heterogeneous at the macroscopic and megascopic scales, with a scale dependency of linear type.

Citation Pacheco, F.A.L., 2013. Hydraulic diffusivity and macrodispersivity calculations embedded in a geographic information system. Hydrological Sciences Journal, 58 (4), 930–944.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号