首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1234篇
  免费   480篇
  国内免费   360篇
测绘学   68篇
大气科学   35篇
地球物理   553篇
地质学   1118篇
海洋学   132篇
天文学   3篇
综合类   47篇
自然地理   118篇
  2024年   8篇
  2023年   23篇
  2022年   54篇
  2021年   63篇
  2020年   99篇
  2019年   94篇
  2018年   86篇
  2017年   81篇
  2016年   88篇
  2015年   86篇
  2014年   114篇
  2013年   126篇
  2012年   102篇
  2011年   93篇
  2010年   79篇
  2009年   68篇
  2008年   74篇
  2007年   87篇
  2006年   92篇
  2005年   94篇
  2004年   69篇
  2003年   48篇
  2002年   53篇
  2001年   40篇
  2000年   41篇
  1999年   42篇
  1998年   33篇
  1997年   26篇
  1996年   22篇
  1995年   15篇
  1994年   19篇
  1993年   13篇
  1992年   8篇
  1991年   9篇
  1990年   9篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
排序方式: 共有2074条查询结果,搜索用时 46 毫秒
51.
River confluences and their associated tributaries are key morphodynamic nodes that play important roles in controlling hydraulic geometry and hyporheic water exchange in fluvial networks. However, the existing knowledge regarding hyporheic water exchange associated with river confluence morphology is relatively scarce. On January 14 and 15, 2016, the general hydraulic and morphological characteristics of the confluent meander bend (CMB) between the Juehe River and the Haohe River in the southern region of Xi'an City, Shaanxi Province, China, were investigated. The patterns and magnitudes of vertical hyporheic water exchange (VHWE) were estimated based on a one‐dimensional heat steady‐state model, whereas the sediment vertical hydraulic conductivity (Kv) was calculated via in situ permeameter tests. The results demonstrated that 6 hydrodynamic zones and their extensions were observed at the CMB during the test period. These zones were likely controlled by the obtuse junction angle and low momentum flux ratio, influencing the sediment grain size distribution of the CMB. The VHWE patterns at the test site during the test period mostly showed upwelling flow dominated by regional groundwater discharging into the river. The occurrence of longitudinal downwelling and upwelling patterns along the meander bend at the CMB was likely subjected to the comprehensive influences of the local sinuosity of the meander bend and regional groundwater discharge and finally formed regional and local flow paths. Additionally, in dominated upwelling areas, the change in VHWE magnitudes was nearly consistent with that in Kv values, and higher values of both variables generally occurred in erosional zones near the thalweg paths of the CMB, which were mostly made up of sand and gravel. This was potentially caused by the erosional and depositional processes subjected to confluence morphology. Furthermore, lower Kv values observed in downwelling areas at the CMB were attributed to sediment clogging caused by local downwelling flow. The confluence morphology and sediment Kv are thus likely the driving factors that cause local variations in the VHWE of fluvial systems.  相似文献   
52.
Karst systems provide water for domestic and industrial uses and for generating hydropower, but they can also create fluvial hazards, such as upstream back‐flooding and downstream karst flash‐flood events. However, these hazards are difficult to foresee due to the complex recharge‐discharge processes as well as the lack of information on the inside of the system, which has often not been completely surveyed by speleologists or explored by boreholes. To overcome these difficulties, hydro‐chemical data from the monitoring system in the Middle Bussento Karst System (MBSKS), one of the first Experimental Karst Systems in southern Italy, were recorded and previously discussed. Based on shared background in flood karst hydraulic modeling, this paper describes the conceptual premises and rationale of a general‐purpose hydraulic model that is suitable both for the MBSKS and for other Mediterranean, multi‐recharge, mature, conduit‐dominated karst systems. To test the reliability of the model, simulations of time–space behavior and response are performed using natural and artificial flood pulses “as tracers”, considering a “pulse” as a significant variation in water quantity and/or quality. The results of the model explain the interactions between allogenic, autogenic, and anthropogenic recharges from differentiated sources and phreatic conduit systems. These results also clarify the overall response of karst springs at typical time scales of flood pulses. Table acronym name  相似文献   
53.
Spatial heterogeneity is ubiquitous in nature, which may significantly affect the soil hydraulic property curves. The models of a closed‐form functional relationship of soil hydraulic property curves (e.g. VG model or exponential model) are valid at point or local scale based on a point‐scale hydrological process, but how do scale effects of heterogeneity have an influence on the parameters of these models when the models are used in a larger scale process? This paper uses a two‐dimensional variably saturated flow and solute transport finite element model (VSAFT2) to simulate variations of pressure and moisture content in the soil flume under a constant head boundary condition. By changing different numerical simulation block sizes, a quantitative evaluation of parameter variations in the VG model, resulting from the scale effects, is presented. Results show that the parameters of soil hydraulic properties are independent of scale in homogeneous media. Parameters of α and n in homogeneous media, which are estimated by using the unsaturated hydraulic conductivity curve (UHC) or the soil water retention curve (WRC), are identical. Variations of local heterogeneities strongly affect the soil hydraulic properties, and the scale affects the results of the parameter estimations when numerical experiments are conducted. Furthermore, the discrepancy of each curve becomes considerable when moisture content becomes closer to a dry situation. Parameters estimated by UHC are totally different from the ones estimated by WRC. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
54.
The initiation and propagation of directional hydraulic fracturing (DHF) was investigated based on true tri-axial experiment and finite element modeling. The influences of notch angle, notch length and injection rate on the DHF were investigated. The initiation and propagation of DHF was modeled by a 3D nonlinear finite element method. A comparison between experimental investigation and numerical modeling results indicates that there is a good correlation between unbalanced force (UF) and fracturing. UF can be used to predict the hydraulic fracture initiation and propagation.  相似文献   
55.
综合糙率是采用曼宁公式确定河道水位和流量关系的关键参数。在河道冰封期,冰盖的出现增加了流动的阻力,明流条件下确定的综合糙率不再适用,需要重新估算。基于Einstein阻力划分过流断面的原理,冰盖下矩形河道的过水断面可划分为冰盖区、河床区和边壁区。根据总流的连续性方程,在确定各分区糙率系数、水力半径和断面面积的基础上,提出了冰盖下矩形河道综合糙率的计算公式。采用已有的试验水槽测量数据和天然河道实测资料对公式进行了验证,结果表明:公式计算的综合糙率与实测值吻合较好,与Einstein公式和Sabaneev公式相比,计算精度更高;对于冰封水流,宽浅河道采用分区水深代替水力半径进行简化计算的条件有别于明渠水流,在宽深比大于20时,计算结果才满足精度要求。  相似文献   
56.
裴熊伟 《探矿工程》2016,43(3):56-59
压水试验水压式栓塞较其他类型栓塞可靠、灵活,但一直存在试验结束后排水泄压难题,使该类型栓塞使用局限于浅孔及地下水位高的钻孔。本文对该问题进行了研究,提出了解决方案,设计了新型水压式栓塞结构。解决了一直以来水压式栓塞的排水泄压难题,突破了试验孔深限制,使水压式栓塞能得到广泛应用。介绍了该新型水压式栓塞的结构和工作原理以及工程应用效果。  相似文献   
57.
This paper presents leachate studies on fly ash-stabilised expansive clay liners. Fly ash in different contents (0%, 10%, 20% and 30%) by dry weight of the expansive clay was added to the clay, and the ash-clay blend was compacted as a liner overlying a compacted lateritic clay layer. Deionised water (DIW) and calcium chloride (CaCl2) solutions of varying concentration (5 mM, 10 mM, 20 mM, 50 mM, 100 mM and 500 mM) were used as the permeating fluids in the leachate studies. Chemical analysis of the leachate was performed. For a given CaCl2 concentration, the concentrations of both calcium ion and chloride ion in the leachate decreased up to a fly ash content of 20%, and thereafter they increased when the fly ash content was increased to 30%. Further, for a given fly ash content, concentrations of calcium ion and chloride ion increased with increasing CaCl2 concentration.  相似文献   
58.
Difficulties in the prediction of time-distribution of consolidation settlement will be introduced by using the Murayama test embankment case of Japan. In particular, it will be discussed why the prediction of consolidation rate is difficult in multi-layered soil with complex and variable mechanical properties like organic soil or peat. It can be inferred that uncertainties, which are embedded intricately in the consolidation problem as well as given ground condition, would be major causes for consolidation settlement. After that, the author focused on the movement of pore water under the various conditions of hydraulic conductivity in the soils, and how it can affect the time-distribution of the consolidation settlement. For the applied key methodology on the consolidation settlement problem, we propose the hybrid consolidation simulation controlling the movement of pore water with high accuracy and, finally, the aim of this article is to discuss the methodological approaches obtained by the study, including the basic concept and accurate movement of pore water under various conditions of soil layers and hydraulic conductivity.  相似文献   
59.
The shortcomings of gravity corers in sampling marine sediments have been observed extensively in various field tests. In order to optimize the coring, this article provides an alternative numerical way to model the gravity coring and analyze the sampling effect. Based on this analysis, a new hydraulic hammer corer is devised. A coupled Eulerian-Lagrangian method with capability of simulating the problem involving extreme deformation, penetration is used to simulate the coring process. The results show that the hydrostatic pressure and deviator stress increase and reach their peak when the pile tip is slightly above or at the level of the observation point and then drop rapidly when the pile tip slides below the observation point. In addition, the stress path indicates that the soil element sustains plastic compression before yielding and then expands until recovering to the original state. The obvious “under-sampling” phenomenon is also well-captured by the finite element model.  相似文献   
60.
A structural interpretation of the Ziarat block in the Balochistan region (a part of the Suleiman Fold and Thrust Belt) has been carried out using seismic and seismological data. Seismic data consists of nine 2.5D pre‐stack migrated seismic lines, whereas the seismological data covers the Fault Plane Solution and source parameters. Structural interpretation describes two broad fault sets of fore and back thrusts in the study area that have resulted in the development of pop‐up structures, accountable for the structural traps and seismicity pattern in terms of seismic hazard. Seismic interpretation includes time and depth contour maps of the Dungan Formation and Ranikot group, while seismological interpretation includes Fault Plane Solution, that is correlated with a geological and structural map of the area for the interpretation of the nature of the subsurface faults. Principal stresses are also estimated for the Ranikot group and Dungan Formation. In order to calculate anisotropic elastic properties, the parameters of the rock strength of the formations are first determined from seismic data, along with the dominant stresses (vertical, minimum horizontal, and maximum horizontal). The differential ratio of the maximum and minimum horizontal stresses is obtained to indicate optimal zones for hydraulic fracturing, and to assess the potential for geothermal energy reservoir prospect generation. The stress maps indicate high values towards the deeper part of the horizon, and low towards the shallower part, attributed to the lithological and structural variation in the area. Outcomes of structural interpretation indicate a good correlation of structure and tectonics from both seismological and seismic methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号