首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   467篇
  免费   128篇
  国内免费   75篇
测绘学   67篇
大气科学   68篇
地球物理   248篇
地质学   117篇
海洋学   90篇
天文学   7篇
综合类   35篇
自然地理   38篇
  2024年   4篇
  2023年   8篇
  2022年   23篇
  2021年   21篇
  2020年   20篇
  2019年   35篇
  2018年   34篇
  2017年   25篇
  2016年   34篇
  2015年   32篇
  2014年   33篇
  2013年   38篇
  2012年   30篇
  2011年   30篇
  2010年   22篇
  2009年   34篇
  2008年   36篇
  2007年   37篇
  2006年   24篇
  2005年   20篇
  2004年   26篇
  2003年   18篇
  2002年   17篇
  2001年   12篇
  2000年   7篇
  1999年   11篇
  1998年   9篇
  1997年   8篇
  1996年   6篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1986年   3篇
排序方式: 共有670条查询结果,搜索用时 15 毫秒
21.
BPSA混合策略在GPS高程拟合中的应用   总被引:1,自引:1,他引:1  
针对误差反向传播(BP)算法训练速度慢和易于陷入局部最小值的缺点,利用BP算法监督学习特点,模拟退火算法(SA)在局部极小处的概率突变性,有效结合BP和SA算法,提出一种BPSA混合学习策略。将其应用于GPS高程拟合,并以实例验证了该算法的有效性。  相似文献   
22.
This paper presents a new method, called the equivalent force control method, for solving the nonlinear equations of motion in a real‐time substructure test using an implicit time integration algorithm. The method replaces the numerical iteration in implicit integration with a force‐feedback control loop, while displacement control is retained to control the motion of an actuator. The method is formulated in such a way that it represents a unified approach that also encompasses the effective force test method. The accuracy and effectiveness of the method have been demonstrated with numerical simulations of real‐time substructure tests with physical substructures represented by spring and damper elements, respectively. The method has also been validated with actual tests in which a Magnetorheological damper was used as the physical substructure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
23.
Real‐time pseudodynamic (PSD) testing is an experimental technique for evaluating the dynamic behaviour of a complex structure. During the test, when the targeted command displacements are not achieved by the test structure, or a delay in the measured restoring forces from the test structure exists, the reliability of the testing method is impaired. The stability and accuracy of real‐time PSD testing in the presence of amplitude error and a time delay in the restoring force is presented. Systems consisting of an elastic single degree of freedom (SDOF) structure with load‐rate independent and dependent restoring forces are considered. Bode plots are used to assess the effects of amplitude error and a time delay on the steady‐state accuracy of the system. A method called the pseudodelay technique is used to derive the exact solution to the delay differential equation for the critical time delay that causes instability of the system. The solution is expressed in terms of the test structure parameters (mass, damping, stiffness). An error in the restoring force amplitude is shown to degrade the accuracy of a real‐time PSD test but not destabilize the system, while a time delay can lead to instability. Example calculations are performed for determining the critical time delay, and numerical simulations with both a constant delay and variable delay in the restoring force are shown to agree well with the stability limit for the system based on the critical time delay solution. The simulation models are also used to investigate the effects of a time delay in the PSD test of an inelastic SDOF system. The effect of energy dissipation in an inelastic structure increases the limit for the critical time delay, due to the energy removed from the system by the energy dissipation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
24.
A shear building supported by a prescribed pile–soil system is subjected to bedrock earthquake input. A new design procedure is presented for generating a sequence of stiffness designs satisfying the constraints on interstorey drifts. The mean peak interstorey drifts of the shear building subjected to a set of spectrum-compatible ground motions at the bedrock are evaluated by a modal combination rule. Tuning of the fundamental natural period of a shear building with a fixed base with that of a shear beam ground results in a non-monotonic sequence of stiffness designs with respect to a ground stiffness parameter and previous approaches cannot be applied to such a problem. This difficulty in finding such a non-monotonic sequence is overcome by utilizing the ground stiffness parameter and the superstructure stiffness parameter alternately in multiple design phases and by developing a new multi-phase perturbation technique. Fundamental characteristics of this sequence of stiffness designs and the effect of ground stiffnesses on the design of the shear building are disclosed. It is further shown that the stiffness contour method is also useful for the design procedure such that a scattering effect in the estimates of ground stiffnesses is taken into account. The usefulness of the proposed procedure of sequential stiffness design and contour line method is demonstrated through several sequential design examples.  相似文献   
25.
Many single-tower reinforced concrete core wall-steel frame (RCC-SF) buildings have been built in China, but there are no buildings of different-height multi-tower hybrid system. A multi-tower RCC-SF tall building was thus studied because of its structural complexity and irregularity. First, a 1/15 scaled model structure was designed and tested on the shake table under minor, moderate, and major earthquake levels. Then, the dynamic responses of the model structure were interpreted to those of the prototype structure according to the similitude theory. Experimental results demonstrate that, despite the complexity of the structure, the lateral deformation bends as the "bending type" and the RC core walls contribute more than the steel frames to resist seismic loads. The maximum inter-story drift of the complex building under minor earthquakes is slightly beyond the elastic limitation specified in the Chinese code, and meets code requirements under major earthquakes. From the test results some suggestions are provided that could contribute favorable effect on the seismic behavior and the displacement of the building.  相似文献   
26.
本文将调谐液体阻尼器(TLD)和黏弹性阻尼器(VED)同时作用于结构,构成混合被动控制系统。通过对两类阻尼器分别进行优化设计并考虑两者间的相互影响,在充分发挥两者各自优良控制性能的同时,克服了VED大量使用导致控制系统整体造价过高的问题。算例分析表明,混合控制可以得到令人满意的整体减震效果,同时大大节约了VED用量,提高了控制系统的综合经济性能。  相似文献   
27.
高层隔震建筑设计中隔震支座受拉问题分析   总被引:11,自引:0,他引:11  
高层建筑由于高宽比相对较大,倾覆效应明显,当采用隔震技术时,有可能使隔震支座出现拉应力,而通常使用的叠层橡胶隔震支座抗拉能力不强。因此,隔震支座受拉问题成为隔震技术在高层建筑中推广应用的主要障碍之一。本文提出了避免隔震支座受拉的上部结构布置原则及隔震层优化设计方法,并对目前隔震支座拉应力计算方法提出了改进建议。本文的研究工作可为工程设计提供借鉴,为隔震设计相关规范的修订提供依据。  相似文献   
28.
River water temperature is a key physical variable controlling several chemical, biological and ecological processes. Its reliable prediction is a main issue in many environmental applications, which however is hampered by data scarcity, when using data‐demanding deterministic models, and modelling limitations, when using simpler statistical models. In this work we test a suite of models belonging to air2stream family, which are characterized by a hybrid formulation that combines a physical derivation of the key equation with a stochastic calibration of parameters. The air2stream models rely solely on air temperature and streamflow, and are of similar complexity as standard statistical models. The performances of the different versions of air2stream in predicting river water temperature are compared with those of the most common statistical models typically used in the literature. To this aim, a dataset of 38 Swiss rivers is used, which includes rivers classified into four different categories according to their hydrological characteristics: low‐land natural rivers, lake outlets, snow‐fed rivers and regulated rivers. The results of the analysis provide practical indications regarding the type of model that is most suitable to simulate river water temperature across different time scales (from daily to seasonal) and for different hydrological regimes. A model intercomparison exercise suggests that the family of air2stream hybrid models generally outperforms statistical models, while cross‐validation conducted over a 30‐year period indicates that they can be suitably adopted for long‐term analyses. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
29.
Real‐time hybrid simulation is a viable experiment technique to evaluate the performance of structures equipped with rate‐dependent seismic devices when subject to dynamic loading. The integration algorithm used to solve the equations of motion has to be stable and accurate to achieve a successful real‐time hybrid simulation. The implicit HHT α‐algorithm is a popular integration algorithm for conducting structural dynamic time history analysis because of its desirable properties of unconditional stability for linear elastic structures and controllable numerical damping for high frequencies. The implicit form of the algorithm, however, requires iterations for nonlinear structures, which is undesirable for real‐time hybrid simulation. Consequently, the HHT α‐algorithm has been implemented for real‐time hybrid simulation using a fixed number of substep iterations. The resulting HHT α‐algorithm with a fixed number of substep iterations is believed to be unconditionally stable for linear elastic structures, but research on its stability and accuracy for nonlinear structures is quite limited. In this paper, a discrete transfer function approach is utilized to analyze the HHT α‐algorithm with a fixed number of substep iterations. The algorithm is shown to be unconditionally stable for linear elastic structures, but only conditionally stable for nonlinear softening or hardening structures. The equivalent damping of the algorithm is shown to be almost the same as that of the original HHT α‐algorithm, while the period elongation varies depending on the structural nonlinearity and the size of the integration time‐step. A modified form of the algorithm is proposed to improve its stability for use in nonlinear structures. The stability of the modified algorithm is demonstrated to be enhanced and have an accuracy that is comparable to that of the existing HHT α‐algorithm with a fixed number of substep iterations. Both numerical and real‐time hybrid simulations are conducted to verify the modified algorithm. The experimental results demonstrate the effectiveness of the modified algorithm for real‐time testing. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
30.
A two-step stiffness design procedure is developed for a moment-resisting planar frame supported by a prescribed two-dimensional finite-element ground-pile system. In the first step, a hybrid inverse eigenmode problem is formulated and its solution is derived in an analytical form. A difficulty resulting from the existence of multiple interface nodes is overcome by incorporating a deformation constraint into a set of linear equations for finding the lowest-mode displacements at the interface nodes and in the ground. In the second step, the fundamental natural frequency of the combined system and the lowest mode-strain ratios in the frame specified in the first step are regarded as the parameters for adjusting the mean peak seismic member-end strains to their specified values. If the fundamental natural frequency of the frame with a fixed-base happens to be close to that of the ground, a difficulty arises in the two-step stiffness design procedure because of an irregular response amplification and of the non-predominance of the lowest-mode components. A new practical design procedure of rapid convergence is proposed such that an initial design is found for a stiff ground and that a sequence of stiffness designs is generated with respect to a ground stiffness parameter without any differential coefficient of series expansion. The accuracy of the model utilized in this paper and the validity of the present stiffness design procedure are verified through time-history response analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号