首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2560篇
  免费   404篇
  国内免费   805篇
测绘学   68篇
大气科学   454篇
地球物理   1095篇
地质学   1199篇
海洋学   513篇
天文学   72篇
综合类   86篇
自然地理   282篇
  2024年   12篇
  2023年   31篇
  2022年   79篇
  2021年   95篇
  2020年   121篇
  2019年   130篇
  2018年   111篇
  2017年   131篇
  2016年   147篇
  2015年   145篇
  2014年   153篇
  2013年   174篇
  2012年   147篇
  2011年   144篇
  2010年   153篇
  2009年   188篇
  2008年   205篇
  2007年   184篇
  2006年   196篇
  2005年   153篇
  2004年   138篇
  2003年   127篇
  2002年   98篇
  2001年   113篇
  2000年   100篇
  1999年   91篇
  1998年   109篇
  1997年   69篇
  1996年   69篇
  1995年   43篇
  1994年   24篇
  1993年   19篇
  1992年   19篇
  1991年   14篇
  1990年   7篇
  1989年   7篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
排序方式: 共有3769条查询结果,搜索用时 218 毫秒
451.
A combined boundary and finite element method is developed and applied to study the dynamic behaviour of a system of flexible surface footings of arbitrary shape bearing on an elastic half-space. The proposed method employs the frequency domain Green's function for the surface of the elastic half-space while a layered plate model is used for the flexible footing. Both the footing and the surface of the half-space are discretized by 8-noded quadratical isoparametric elements, and the meshes are identical. Thus, the compatibility of displacements and equilibrium of forces between the footing and the half-space are fully satisfied. This model provides a better approximation of the stress concentration at edges of relatively rigid footings. Numerical examples demonstrating the effects due to the excitation frequency, the relative rigidity and the distance between footings on the interaction between two square footings are presented. The external forces can be either harmonic or transient.  相似文献   
452.
The paper is aimed at investigating the effect of foundation rigidity on dynamic stiffness for two circular foundations on a viscoelastic medium. To generate the dynamic stiffness, a substructure technique is employed. For the substructure of a viscoelastic medium, the solution for wave motion reported in Reference 11 is used. For the substructures of two flexible foundations, classical plate theory with the inertial force neglected is employed to find the displacement fields of the foundation plates subjected to the interaction stresses. Then, the continuity condition for all the substructures is imposed implicitly by using the variational principle; then with the help of the reciprocal theorem the dynamic stiffness for the two flexible foundations can be obtained. For the numerical study, the boundary condition at the rims of both foundation plates is assumed to be a hinge connection to superstructures. Some numerical investigations are performed and the effect of foundation rigidity on dynamic stiffness is examined. Some discussions and conclusions are also made.  相似文献   
453.
A systematic procedure to construct the (symmetric) static-stiffness, damping and mass matrices representing the unbounded medium is presented addressing the unit-impulse response matrix corresponding to the degrees of freedom on the structure–medium interface. The unit-impulse response matrix is first diagonalized which then permits each term to be modelled independently from the others using expansions in a series of Legendre polynomials in the time domain. This leads to a rational approximation in the frequency domain of the dynamic-stiffness coefficient. Using a lumped-parameter model which provides physical insight the property matrices are constructed.  相似文献   
454.
Offshore floating facilities are fixed by anchoring systems embedded in seabed soils through chains or ropes. The chain inverse catenary profile embedded in soils influences both the anchor failure mechanism and the anchor holding capacity. The chain mobilizes varying soil normal and tangential resistances during motion, hence it is with difficulty to depict the chain profile. The present work proposed a modified method to estimate the chain inverse catenary profile with high accuracy based on the chain equations and the chain yield envelope. A testing arrangement with three load cells and two MEMS (Micro-electromechanical systems) accelerometers included was designed in model tests. By model tests, the loading combinations of the soil tangential and normal resistances on the chain were obtained and the yield envelopes for both chain and rope were determined. In addition, supplemental model tests were performed to validate the modified method proposed in this study, and the testing results indicated that the estimated chain inverse catenary profile was in good agreement with the actual one. Moreover, the testing arrangement is beneficial in investigating the chain-soil-anchor interaction.  相似文献   
455.
为研究江苏近海海域风暴潮的特性以及为该海域风暴潮增水变化机理及后报做铺垫,本文基于FVCOM(Finite Volume Coast and Ocean Model)海洋模式和Jelesnianski圆形台风风场模型,建立了江苏近海风暴潮数值模型,并对江苏近海的天文潮以及1109号台风和1210号台风引起的风暴潮进行模拟。结合验潮站水位观测,研究了连云港站和吕泗站的天文潮和风暴潮增水过程。我们将风暴潮与天文潮非线性作用下的风暴潮增水和纯风暴潮增水过程进行对比,讨论了天文潮与1109号和1210号台风风暴潮之间的非线性作用引起的增水特征。结果均表明,在天文潮高潮时,天文潮和风暴潮之间的非线性作用可以抑制增水,在天文潮低潮时,天文潮和风暴潮之间的非线性作用有利于增水。除了气象因子以及天文潮和风暴潮之间的非线性作用外,该海区的地理环境也对台风风暴潮增水产生影响。因此对江苏近海的海岸线变化和浅滩地形变化进行敏感性试验,结果表明,本文所设计的海岸线变化对该海域的风暴潮增水影响较小,江苏沿海岸线的向外推移使得江苏海域风暴潮的增水略微上涨,而本文所设计的地形的变化对风暴潮增水影响较大。  相似文献   
456.
The application of a Smoothed Particle Hydrodynamics (SPH) model to simulate the nonlinear interaction between waves and a moored floating breakwater is presented. The main aim is to predict and validate the response of the moored floating structure under the action of periodic waves. The Euler equations together with an artificial viscosity are used as the governing equations to describe the flow field. The motion of the moored floating body is described using the Newton’s second law of motion. The interactions between the waves and structures are modeled by setting a series of SPH particles on the boundary of the structure. The hydrodynamic forces acting on the floating body are evaluated by summing up the interacting forces on the boundary particles from the neighboring fluid particles. The water surface elevations, the movements of the floating body and the moored forces are all calculated and compared with the available experimental data. Good agreements are obtained for the dynamic response and hydrodynamic performance of the floating body. The numerical results of different immersion depths of the floating body are compared with that of the corresponding fixed body. The effects of the relative length and the density of the structure on the performance of the floating body are analyzed.  相似文献   
457.
Taut mooring systems have become prospective alternatives for the station keeping of offshore floating facilities in deep water. The associated embedded anchors cause a part of the mooring line to be buried in the seabed − the inverse catenary − which introduces a requirement to predict the load and uplift angle at the padeye, where the chain is connected to the anchor. The padeye load and angle depend on the shape and tension profile of the inverse catenary, which must be assessed in the mooring system design. The dynamic interaction between the embedded chain and the soil in the inverse catenary is not usually considered in this analysis. Instead, the inverse catenary is assessed statically, albeit potentially using cyclically-degraded soil strength parameters. The present study employs the lumped mass method to simulate the dynamic response of mooring lines under different imposed oscillations at the fairlead, where the chain is connected to the floating facility. A new chain-soil interaction model, which includes hysteresis effects associated with irrecoverable relative chain-soil displacement is calibrated by experimental results. Simulations of cyclic vessel motion are then performed, and the resulting chain-seabed interaction is observed. During constant-amplitude vessel motion cycles, the load angle at the padeye significantly decreases due to progressive ratcheting or ‘shakedown’ of the inverse catenary from the initial static profile towards a straighter profile. This effect is due to the hysteretic soil response and creates a less onerous loading condition for the anchor which may be beneficial, but is conventionally overlooked in design. At the end of the present study, an elastic bound method is proposed to estimate the profile of the inverse catenary after shakedown. A parametric study illustrates the performance of this simple method for predicting the steady state condition.  相似文献   
458.
Among numerous offshore structures used in oil extraction, jacket platforms are still the most favorable ones in shallow waters. In such structures, log piles are used to pin the substructure of the platform to the seabed. The pile’s geometrical and geotechnical properties are considered as the main parameters in designing these structures. In this study, ANSYS was used as the FE modeling software to study the geometrical and geotechnical properties of the offshore piles and their effects on supporting jacket platforms. For this purpose, the FE analysis has been done to provide the preliminary data for the fuzzy-logic post-process. The resulting data were implemented to create Fuzzy Inference System (FIS) classifications. The resultant data of the sensitivity analysis suggested that the orientation degree is the main factor in the pile’s geometrical behavior because piles which had the optimal operational degree of about 5° are more sustained. Finally, the results showed that the related fuzzified data supported the FE model and provided an insight for extended offshore pile designs.  相似文献   
459.
Monopiles are considered to be as a kind of viable foundation types for offshore wind turbines. The effect of negative skin friction on pile foundation is always an important problem. There are very important theoretical and practical significance to study the distribution law of negative skin friction and the calculation method. Based on the special stratum, the stress and strain of the monopile and soil are simplified, and the improved Kezdi’s double-broken-line model is adopted. The analytical solution of negative skin friction of monopile is deduced according to the degree of skin friction. An engineering case was analyzed by the method, and the calculated results agree well with the measured data. The calculation method proposed can accurately describe the range of the monopile skin frictional distribution and the position of the neutral point, and it is simple and convenient to calculate, that is also a feasible method for calculating the negative skin friction of monopile of offshore wind turbines in practical engineering.  相似文献   
460.
不同气候带的河道与沙丘分布格局及其类型划分   总被引:2,自引:2,他引:0  
李小妹  严平  钱瑶  吴伟 《中国沙漠》2017,37(5):821-829
风水交互作用是干旱区常见的地貌现象和重要的地表过程,干旱区河流通过提供物源和场所控制沙漠分布的格局,沙漠分布与风沙活动制约河道发育和泥沙输移,在不同时空尺度表现不一,但关于二者交互作用的分类处于探索阶段,尚未形成分类体系,尤其在地貌格局分类上多为定性描述。因此,自西向东选择位于3个气候带的中国西部克里雅河、中部毛不拉格孔兑以及东部西拉木伦河,利用遥感影像解译获取河道与沙丘信息,探讨近源沙丘的分布与河型之间的组合关系。结果表明:河型、河流流向与风向之间的关系、水文以及距离河道的远近影响河道与沙丘组合的地貌格局;在河道-沙丘尺度上,划分为弯曲河道-对称式边滩沙丘、顺直河道-边滩沙丘、分汊河道-心滩式沙丘、网状河道-格状镶嵌式沙丘4种类型。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号