首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24231篇
  免费   4880篇
  国内免费   5700篇
测绘学   1790篇
大气科学   3553篇
地球物理   7000篇
地质学   13298篇
海洋学   3800篇
天文学   241篇
综合类   1639篇
自然地理   3490篇
  2024年   132篇
  2023年   316篇
  2022年   749篇
  2021年   1081篇
  2020年   1000篇
  2019年   1242篇
  2018年   1029篇
  2017年   1057篇
  2016年   1094篇
  2015年   1289篇
  2014年   1544篇
  2013年   1812篇
  2012年   1569篇
  2011年   1636篇
  2010年   1482篇
  2009年   1563篇
  2008年   1587篇
  2007年   1682篇
  2006年   1710篇
  2005年   1484篇
  2004年   1370篇
  2003年   1160篇
  2002年   1040篇
  2001年   916篇
  2000年   832篇
  1999年   732篇
  1998年   661篇
  1997年   596篇
  1996年   479篇
  1995年   402篇
  1994年   364篇
  1993年   305篇
  1992年   210篇
  1991年   153篇
  1990年   120篇
  1989年   124篇
  1988年   86篇
  1987年   50篇
  1986年   33篇
  1985年   36篇
  1984年   24篇
  1983年   13篇
  1982年   4篇
  1981年   9篇
  1980年   8篇
  1979年   4篇
  1978年   9篇
  1977年   3篇
  1971年   4篇
  1954年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
961.
Current methods to estimate snow accumulation and ablation at the plot and watershed levels can be improved as new technologies offer alternative approaches to more accurately monitor snow dynamics and their drivers. Here we conduct a meta‐analysis of snow and vegetation data collected in British Columbia to explore the relationships between a wide range of forest structure variables – obtained from Light Detection and Ranging (LiDAR), hemispherical photography (HP) and Landsat Thematic Mapper – and several indicators of snow accumulation and ablation estimated from manual snow surveys and ultrasonic range sensors. By merging and standardizing all the ground plot information available in the study area, we demonstrate how LiDAR‐derived forest cover above 0.5 m was the variable explaining the highest percentage of absolute peak snow water equivalent (SWE) (33%), while HP‐derived leaf area index and gap fraction (45° angle of view) were the best potential predictors of snow ablation rate (explaining 57% of variance). This study reveals how continuous SWE data from ultrasonic sensors are fundamental to obtain statistically significant relationships between snow indicators and structural metrics by increasing mean r2 by 20% when compared to manual surveys. The relationships between vegetation and spectral indices from Landsat and snow indicators, not explored before, were almost as high as those shown by LiDAR or HP and thus point towards a new line of research with important practical implications. While the use of different data sources from two snow seasons prevented us from developing models with predictive capacity, a large sample size helped to identify outliers that weakened the relationships and suggest improvements for future research. A concise overview of the limitations of this and previous studies is provided along with propositions to consistently improve experimental designs to take advantage of remote sensing technologies, and better represent spatial and temporal variations of snow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
962.
The timing of high lake-level stands during the Late Pleistocene in western China remains controversial. Here we report new results from Megalake Tengger based on a study of palaeo-shorelines and a drill core from Baijian Lake in the northwestern Tengger Desert. Multiple dating methods, based on luminescence signals (quartz optically stimulated luminescence, K-feldspar post infrared-infrared stimulated luminescence) and electron spin resonance signals of quartz, were used to date beach sands from palaeo-shoreline profiles at altitudes of ~1310 m (+20 m above lake level), ~1320 m (+30 m) and ~1350 m (+60 m), and from the top 20 m of sandy sediments from the drill core obtained from the modern beach of Baijian Lake. The dating results show that high lake-level stands associated with the previously reported Megalake Tengger (~1310–1320 m) occurred during the late Early to Middle Pleistocene, which is much earlier than previously reported. In addition, no geomorphological evidence of shorelines and sedimentary evidence from the drill core profile were found to support the previously reported Late Pleistocene lake levels. Our results indicate that the exact age of the previously reported ‘high lake level event’ in a large part of northwestern China during the Late Pleistocene needs to be re-evaluated.  相似文献   
963.
The last decade has seen major technical and scientific improvements in the study of water transfer time through catchments. Nevertheless, it has been argued that most of these developments used conservative tracers that may disregard the oldest component of water transfer, which often has transit times greater than 5 years. Indeed, although the analytical reproducibility of tracers limits the detection of the older flow components associated with the most dampened seasonal fluctuations, this is very rarely taken into account in modelling applications. Tritium is the only environmental tracer at hand to investigate transfer times in the 5‐ to 50‐year range in surface waters, as dissolved gases are not suitable due to the degassing process. Water dating with tritium has often been difficult because of the complex history of its atmospheric concentration, but its current stabilization together with recent analytical improvements open promising perspectives. In this context, the innovative contribution of this study lies in the development of a generalized likelihood uncertainty estimation‐based approach for analysing the uncertainties associated with the modelling of transit time due to both parameter identification and tracer analytical precision issues. A coupled resampling procedure allows assessment of the statistical significance of the transfer time differences found in diverse waters. This approach was developed for tritium and the exponential‐piston model but can be implemented for virtually any tracer and model. Stream baseflow, spring and shallow aquifer waters from the Vallcebre research catchments, analysed for tritium in different years with different analytical precisions, were investigated by using this approach and taking into account other sources of uncertainty. The results showed three groups of waters of different mean transit times, with all the stream baseflow and spring waters older than the 5‐year threshold needing tritium. Low sensitivity of the results to the model structure was also demonstrated. Dual solutions were found for the waters sampled in 2013, but these results may be disambiguated when additional analyses will be made in a few years. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
964.
Time series of hydrogen and oxygen stable isotope ratios (δ2H and δ18O) in rivers can be used to quantify groundwater contributions to streamflow, and timescales of catchment storage. However, these isotope hydrology techniques rely on distinct spatial or temporal patterns of δ2H and δ18O within the hydrologic cycle. In New Zealand, lack of understanding of spatial and temporal patterns of δ2H and δ18O of river water hinders development of regional and national-scale hydrological models. We measured δ2H and δ18O monthly, together with river flow rates at 58 locations across New Zealand over a two-year period. Results show: (a) general patterns of decreasing δ2H and δ18O with increasing latitude were altered by New Zealand's major mountain ranges; δ2H and δ18O were distinctly lower in rivers fed from higher elevation catchments, and in eastern rain-shadow areas of both islands; (b) river water δ2H and δ18O values were partly controlled by local catchment characteristics (catchment slope, PET, catchment elevation, and upstream lake area) that influence evaporation processes; (c) regional differences in evaporation caused the slope of the river water line (i.e., the relationship between δ2H and δ18O in river water) for the (warmer) North Island to be lower than that of the (cooler, mountain-dominated) South Island; (d) δ2H seasonal offsets (i.e., the difference between seasonal peak and mean values) for individual sites ranged from 0.50‰ to 5.07‰. Peak values of δ18O and δ2H were in late summer, but values peaked 1 month later at the South Island sites, likely due to greater snow-melt contributions to streamflow. Strong spatial differences in river water δ2H and δ18O caused by orographic rainfall effects and evaporation may inform studies of water mixing across landscapes. Generally distinct seasonal isotope cycles, despite the large catchment sizes of rivers studied, are encouraging for transit time analysis applications.  相似文献   
965.
Riparian plants can adapt their water uptake strategies based on climatic and hydrological conditions within a river basin. The response of cold-alpine riparian trees to changes in water availability is poorly understood. The Lhasa River is a representative cold-alpine river in South Tibet and an under-studied environment. Therefore, a 96 km section of the lower Lhasa River was selected for a study on the water-use patterns of riparian plants. Plant water, soil water, groundwater and river water were measured at three sites for δ18O and δ2H values during the warm-wet and cold-dry periods in 2018. Soil profiles differed in isotope values between seasons and with the distance along the river. During the cold-dry period, the upper parts of the soil profiles were significantly affected by evaporation. During the warm-wet period, the soil profile was influenced by precipitation infiltration in the upper reaches of the study area and by various water sources in the lower reaches. Calculations using the IsoSource model indicated that the mature salix and birch trees (Salix cheilophila Schneid. and Betula platyphylla Suk.) accessed water from multiple sources during the cold-dry period, whereas they sourced more than 70% of their requirement from the upper 60–80 cm of the soil profile during the warm-wet period. The model indicated that the immature rose willow tree (Tamarix ramosissima Ledeb) accessed 66% of its water from the surface soil during the cold-dry period, but used the deeper layers during the warm-wet period. The plant type was not the dominant factor driving water uptake patterns in mature plants. Our findings can contribute to strategies for the sustainable development of cold-alpine riparian ecosystems. It is recommended that reducing plantation density and collocating plants with different rooting depths would be conducive to optimal plant growth in this environment.  相似文献   
966.
In high elevation cold regions of the Tibetan Plateau, suspended sediment transfer from glacier meltwater erosion is one of the important hydrological components. The Zhadang glacier is a typical valley‐type glacier in the Nyainqentanglha Mountains on the Tibetan Plateau. To make frequent and long period records of meltwater runoff and sediment processes in the very high elevation and isolated regions, an automatic system was installed near the glacier snout (5400 m a.s.l) in August 2013, to measure the transient discharge and sediment processes at 5‐min interval, which is shorter than the time span for the water flow to traverse the catchment from the farthest end to the watershed outlet. Diurnal variations of discharge, and suspended sediment concentration (SSC) were recorded at high frequency for the Zhadang glacier, before suspended sediment load (SSL) was computed. Hourly SSC varied from the range of 0.2 kg/m3 to 0.5 kg/m3 (at 8:00–9:00) to the range of 2.0 kg/m3 to 4.0 kg/m3 (at 17:00–18:00). The daily SSL was 32.24 t during the intense ablation period. Hourly SSC was linearly correlated with discharge (r = 0.885**, n = 18, p < 0.01). A digit‐eight hysteresis loop was observed for the sediment transport in the glacier area. Air temperature fluctuations influence discharge, and then result in the sediment variations. The results of this study provide insight into the responses of suspended sediment delivery processes with a high frequency data in the high elevation cold regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
967.
Groundwater storage, drainage, and interbasin water exchange are common hydrological processes but often difficult to quantify due to a lack of local observations. We present a study of three volcanic mountainous watersheds located in south‐central Chile (~36.9 ° S) in the Chillán volcanic complex (Chillán, Renegado, and Diguillín river basins). These are neighboring basins that are similar with respect to the metrics normally available for characterization everywhere (e.g., precipitation, temperature, and land cover). In a hydrological sense, similar (proportional) behavior would be expected if these catchments would be characterized with this general information. However, these watersheds show dissimilar behavior when analyzed in detail. The surface water balance does not fit for any of these watersheds individually; however, the water balance of the whole system can be explained by likely interbasin water exchanges. The Renegado river basin has an average annual runoff per unit of area on the order of 60–65% less than those of the Diguillín and Chillán rivers, which is contradictory to the hydrological similarity among the basins. To understand the main processes that control streamflow generation, two analyses were performed: (a) basin metrics (land cover, geologic, topographic, and climatological maps) and hydro‐meteorological data analyses and (b) a water balance model approach. The analyses contribute to a plausible explanation for the hydrogeological processes in the system. The soils, topography, and geology of the Chillán–Renegado–Diguillín system favor the infiltration and groundwater movements from the Renegado river basin, mainly to the neighboring Diguillín basin. The interbasin water exchanges affect hydrological similarity and explain the differences observed in the hydrological processes of these three apparently similar volcanic basins. The results highlight the complexity of hydrological processes in volcanic mountainous systems and suggest that a simple watershed classification approach based on widely available data is insufficient. Simple local analyses such as specific flow analysis with a review of the geology and morphology can contribute to a better understanding of the hydrology of volcanic mountainous areas.  相似文献   
968.
Evapotranspiration (ET) is an important expenditure in water and energy balances, especially on cold and high‐altitude land surfaces. Daily ET of the upper reach of the Shule River Basin was estimated using Landsat 5 TM data and the Surface Energy Balance Algorithm for Land (SEBAL) model. Based on observations made at the Suli station, the algorithms of land surface temperature and soil heat flux in SEBAL were modified. Land surface temperature was retrieved and compared with ground truth via three methods: the radiative transfer equation method, the mono‐window algorithm, and the single‐channel method. We selected the best of these methods, mono‐window algorithm, for estimating ET. The average error of daily ET estimated by the modified SEBAL model and measured by the eddy covariance system was 16.4%, with a root‐mean‐square error of 0.52 mm d?1. The estimated ET means were 3.09, 2.48, and 1.48 mm d?1 on June 9 (DOY 160), June 25 (DOY 176), and July 27 (DOY 208) of the year 2010, respectively. The average estimated ET on the glacier surface of all days was more than 3 mm d?1, a measurement that is difficult to capture in‐situ and has rarely been reported. This study will improve the understanding of water balance in cold, high‐altitude regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
969.
Urban floods pose a societal and economical risk. This study evaluated the risk and hydro-meteorological conditions that cause pluvial flooding in coastal cities in a cold climate. Twenty years of insurance claims data and up to 97 years of meteorological data were analysed for Reykjavík, Iceland (64.15°N; <100 m above sea level). One third of the city's wastewater collection system is combined, and pipe grades vary from 0.5% to 10%. Results highlight semi-intensive rain (<7 mm/h; ≤3 year return period) in conjunction with snow and frozen ground as the main cause for urban flood risk in a climate which undergoes frequent snow and frost cycles (avg. 13 and 19 per season, respectively). Floods in winter were more common, more severe and affected a greater number of neighbourhoods than during summer. High runoff volumes together with debris remobilized with high winds challenged the capacity of wastewater systems regardless of their age or type (combined vs. separate). The two key determinants for the number of insurance claims were antecedent frost depth and total precipitation volume per event. Two pluvial regimes were particularly problematic: long duration (13–25 h), late peaking rain on snow (RoS), where snowmelt enhanced the runoff intensity, elongated and connected independent rainfall into a singular, more voluminous (20–76 mm) event; shorter duration (7–9 h), more intensive precipitation that evolved from snow to rain. Closely timed RoS and cooling were believed to trigger frost formation. A positive trend was detected in the average seasonal snow depth and volume of rain and snowmelt during RoS events. More emphasis, therefore, needs to be placed on designing and operating urban drainage infrastructure with regard to RoS co-acting with frozen ground. Furthermore, more detailed, routine monitoring of snow and soil conditions is important to predict RoS flood events.  相似文献   
970.
Integrated hydrological models are usually calibrated against observations of river discharge and piezometric head in groundwater aquifers. Calibration of such models against spatially distributed observations of river water level can potentially improve their reliability and predictive skill. However, traditional river gauging stations are normally spaced too far apart to capture spatial patterns in the water surface, whereas spaceborne observations have limited spatial and temporal resolution. Unmanned aerial vehicles can retrieve river water level measurements, providing (a) high spatial resolution; (b) spatially continuous profiles along or across the water body, and (c) flexible timing of sampling. A semisynthetic study was conducted to analyse the value of the new unmanned aerial vehicle‐borne datatype for improving hydrological models, in particular estimates of groundwater–surface water (GW–SW) interaction. Mølleåen River (Denmark) and its catchment were simulated using an integrated hydrological model (MIKE 11–MIKE SHE). Calibration against distributed surface water levels using the Differential Evolution Adaptive Metropolis algorithm demonstrated a significant improvement in estimating spatial patterns and time series of GW–SW interaction. After water level calibration, the sharpness of the estimates of GW–SW time series improves by ~50% and root mean square error decreases by ~75% compared with those of a model calibrated against discharge only.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号