首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   974篇
  免费   120篇
  国内免费   116篇
测绘学   51篇
大气科学   49篇
地球物理   227篇
地质学   426篇
海洋学   59篇
天文学   1篇
综合类   48篇
自然地理   349篇
  2024年   6篇
  2023年   10篇
  2022年   41篇
  2021年   50篇
  2020年   47篇
  2019年   68篇
  2018年   26篇
  2017年   46篇
  2016年   40篇
  2015年   41篇
  2014年   27篇
  2013年   66篇
  2012年   39篇
  2011年   45篇
  2010年   50篇
  2009年   41篇
  2008年   54篇
  2007年   63篇
  2006年   59篇
  2005年   41篇
  2004年   52篇
  2003年   40篇
  2002年   26篇
  2001年   15篇
  2000年   33篇
  1999年   20篇
  1998年   16篇
  1997年   24篇
  1996年   13篇
  1995年   26篇
  1994年   14篇
  1993年   15篇
  1992年   9篇
  1991年   4篇
  1990年   14篇
  1989年   10篇
  1988年   3篇
  1987年   8篇
  1986年   5篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有1210条查询结果,搜索用时 250 毫秒
31.
地域分异是地球表层大小不等、内部具有一定相似性地段之间的相互分化以及由此产生的差异。为了研究不同区位土壤侵蚀问题,从土壤生态景观及系统论出发,运用地质学、地理学、景观生态学、环境学的理论和研究方法,研究湖北省土壤侵蚀景观空间格局及其驱动因子,使土壤侵蚀问题研究提高到一个新的水平。湖北省土壤侵蚀景观具有南北分带、东西分区,为一不对称的断块一环组合,土壤流呈现向长江、江汉盆地中心轴带辐聚、单流向特点。景观空间异质性形成的首要驱动因子是大地构造背景,以房县一襄樊一广济断裂带为界,南北两侧地壳物质组成和构造发展史存在较明显的差异,现代气候带、降雨量、温热程度及土地利用等差异,造成了湖北省区域土壤地理、土壤生态的分异,形成湖北省土壤生态带、区具有南北分带,东西分区的宏观格局;其次大兴安岭一武陵山深部构造陡变带两侧新构造运动强度差异、大别造山带构造强烈隆升,导致土壤侵蚀强度的西强东弱、南北强中间弱的态势;成土母岩差异性决定了土壤可蚀性的多变;空间上“土壤侵蚀内城区”分布在湖北省的周边地区,经济贫困、管理落后,这一地区的经济水平与水土流失间形成“自反馈作用”,这一现象在我国水土保持、生态建设工作中应该引起重视。  相似文献   
32.
Simulation of subsurface heterogeneity is important for modeling subsurface flow and transport processes. Previous studies have indicated that subsurface property variations can often be characterized by fractional Brownian motion (fBm) or (truncated) fractional Levy motion (fLm). Because Levy-stable distributions have many novel and often unfamiliar properties, studies on generating fLm distributions are rare in the literature. In this study, we generalize a relatively simple and computationally efficient successive random additions (SRA) algorithm, originally developed for generating Gaussian fractals, to simulate fLm distributions. We also propose an additional important step in response to continued observations that the traditional SRA algorithm often generates fractal distributions having poor scaling and correlation properties. Finally, the generalized and modified SRA algorithm is validated through numerical tests.  相似文献   
33.
The chromites from the alpine type ultramafic intrusive of Sukinda, India, display a typical partly inverse spinel form and occur in two distinct zones: Brown Ore Zone (BOZ) and Grey Ore Zone (GOZ). The host ultramafites are mostly altered and are represented by the serpentinite, tremolite-talc(chlorite) schist, talc-serpentine schist and chlorite rock. The less altered variants are dunite, harzburgite and websterite. A dyke of orthopyroxenite runs through the main ultramafic body.The composition of olivine (Fo92), orthopyroxene (En92–89) and Al2O3 contents of the parental liquid (10.40–11.45%) determined from chromites, suggest that the parent melt is of boninitic affinity. The chemical plot of TiO2 content against cr# of chromites corroborates a boninitic parental melt. The Fe–Mg partitioning in olivine and chromite depicts the temperature for chromitites as 1200 °C. A compositional plot of mg# and cr# suggests crystallization at high pressure conditions, corresponding to the kimberlite xenolith field. From the PT diagram of pyrolite melting and mineral assemblage, the pressure of crystallization is stipulated to be ≥1.2 GPa. The fO2 values estimated from Fe3+/Cr+Al+Fe3+ ratios range from 10−8.3 to 10−9.3 for the GOZ and 10−7.1 to 10−7.3 for the BOZ. The fO2 values together with the pressure range suggest crystallization at upper mantle conditions. The heterogeneity in chemical composition and fO2 conditions for the GOZ and BOZ could be linked to heterogeneity in the upper mantle.  相似文献   
34.
1IntroductionStudy on the interrelationship between vegetation patterns and their habitat heterogeneity is important to recover and rehabilitate the desert vegetation, stabilize the desert ecosystem and prevent desert expansion. Domestic and foreign researchers have carried out many studies on this topic (Archer etal., 2002; Bolling etal., 2000; Chen etal., 2003; Dasti etal., 1994; Gu etal., 2002, Li etal., 2001; Li etal., 2001; Liang etal., 2003), which have used and refined statistic tech…  相似文献   
35.
The dynamics of vegetation‐driven spatial heterogeneity (VDSH) and its function in structuring runoff and sediment fluxes have received increased attention from both geomorphological and ecological perspectives, particularly in arid regions with sparse vegetation cover. This paper reviews the recent findings in this area obtained from field evidence and numerical simulation experiments, and outlines their implications for soil erosion assessment. VDSH is often observed at two scales, individual plant clumps and stands of clumps. At the patch scale, the local outcomes of vegetated patches on soil erodibility and hydraulic soil properties are well established. They involve greater water storage capacity as well as increased organic carbon and nutrient inputs. These effects operate together with an enhanced capacity for the interception of water and windborne resources, and an increased biological activity that accelerates breakdown of plant litter and nutrient turnover rates. This suite of relationships, which often involve positive feedback mechanisms, creates vegetated patches that are increasingly different from nearby bare ground areas. By this way a mosaic builds up with bare ground and vegetated patches coupled together, respectively, as sources and sinks of water, sediments and nutrients. At the stand scale within‐storm temporal variability of rainfall intensity controls reinfiltration of overland flow and its decay with slope length. At moderate rainfall intensity, this factor interacts with the spatial structure of VDSH and the mechanism of overland flow generation. Reinfiltration is greater in small‐grained VDSH and topsoil saturation excess overland flow. Available information shows that VDSH structures of sources and sinks of water and sediments evolve dynamically with hillslope fluxes and tune their spatial configurations to them. Rainfall simulation experiments in large plots show that coarsening VDSH leads to significantly greater erosion rates even under heavy rainfall intensity because of the flow concentration and its velocity increase. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
36.
37.
Assuming homogeneity in alluvial aquifers is convenient, but limits our ability to accurately predict stream‐aquifer interactions. Research is needed on (i) identifying the presence of focused, as opposed to diffuse, groundwater discharge/recharge to streams and (ii) the magnitude and role of large‐scale bank and transient storage in alluvial floodplains relative to changes in stream stage. The objective of this research was to document and quantify the effect of stage‐dependent aquifer heterogeneity and bank storage relative to changes in stream stage using groundwater flow divergence and direction. Monitoring was performed in alluvial floodplains adjacent to the Barren Fork Creek and Honey Creek in northeastern Oklahoma. Based on results from subsurface electrical resistivity mapping, observation wells were installed in high and low electrical resistivity subsoils. Water levels in the wells were recorded real time using pressure transducers (August to October 2009). Divergence was used to quantify heterogeneity (i.e. variation in hydraulic conductivity, porosity, and/or aquifer thickness), and flow direction was used to assess the potential for large‐scale (100 m) bank or transient storage. Areas of localized heterogeneity appeared to act as divergence zones allowing stream water to quickly enter the groundwater system, or as flow convergence zones draining a large groundwater area. Maximum divergence or convergence occurred with maximum rates of change in flow rates or stream stage. Flow directions in the groundwater changed considerably between base and high flows, suggesting that the floodplains acted as large‐scale bank storage zones, rapidly storing and releasing water during passage of a storm hydrograph. During storm events at both sites, the average groundwater direction changed by at least 90° from the average groundwater direction during baseflow. Aquifer heterogeneity in floodplains yields hyporheic flows that are more responsive and spatially and temporally complex than would be expected compared to more common assumptions of homogeneity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
38.
Deformation mechanisms at the pore scale are responsible for producing large strains in porous rocks. They include cataclastic flow, dislocation creep, dynamic recrystallization, diffusive mass transfer, and grain boundary sliding, among others. In this paper, we focus on two dominant pore‐scale mechanisms resulting from purely mechanical, isothermal loading: crystal plasticity and crofracturing. We examine the contributions of each mechanism to the overall behavior at a scale larger than the grains but smaller than the specimen, which is commonly referred to as the mesoscale. Crystal plasticity is assumed to occur as dislocations along the many crystallographic slip planes, whereas microfracturing entails slip and frictional sliding on microcracks. It is observed that under combined shear and tensile loading, microfracturing generates a softer response compared with crystal plasticity alone, which is attributed to slip weakening where the shear stress drops to a residual level determined by the frictional strength. For compressive loading, however, microfracturing produces a stiffer response than crystal plasticity because of the presence of frictional resistance on the slip surface. Behaviors under tensile, compressive, and shear loading invariably show that porosity plays a critical role in the initiation of the deformation mechanisms. Both crystal plasticity and microfracturing are observed to initiate at the peripheries of the pores, consistent with results of experimental studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
39.
The sedimentary sequences containing lithologic units with low permeability represent hydrogeologic systems, which, as of now, have been little studied despite their diffusion worldwide. A hydrogeologic study, aimed to assess the main factors controlling the groundwater flow dynamics in such systems and their hydraulic interactions with nearby carbonate aquifers, has been carried out in Longano (Isernia, Southern Italy). The analysis of the hydraulic heads, combined with the regimes of the springs and the electric conductivity of the groundwater, mainly reflect vertical and lateral heterogeneities of the media in terms of hydraulic properties. In particular, the flow system is controlled by lateral heterogeneities, which characterize a surficial horizon made up of clayey colluviums and talus deposits, separated from the deeper saturated, fissured bedrock. One‐to‐ten relationships in hydraulic heads, monitored in piezometers crossing the fissured media, further uphold the crucial role played by the lateral contrasts of permeability in controlling the flow dynamics. On the whole, significant interactions with the nearby carbonate hydrostructure take place. Nevertheless, the heterogeneities of the siliciclastic succession and surficial horizon, coupled with the compartmentalization of the carbonate system, lead to a complex hydrogeological scenario. In a wider perspective, this study gives information of utmost importance in order to improve the implementation of mathematical models and configuration of tapping works within these heterogeneous and complex settings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
40.
Spatial heterogeneity is ubiquitous in nature, which may significantly affect the soil hydraulic property curves. The models of a closed‐form functional relationship of soil hydraulic property curves (e.g. VG model or exponential model) are valid at point or local scale based on a point‐scale hydrological process, but how do scale effects of heterogeneity have an influence on the parameters of these models when the models are used in a larger scale process? This paper uses a two‐dimensional variably saturated flow and solute transport finite element model (VSAFT2) to simulate variations of pressure and moisture content in the soil flume under a constant head boundary condition. By changing different numerical simulation block sizes, a quantitative evaluation of parameter variations in the VG model, resulting from the scale effects, is presented. Results show that the parameters of soil hydraulic properties are independent of scale in homogeneous media. Parameters of α and n in homogeneous media, which are estimated by using the unsaturated hydraulic conductivity curve (UHC) or the soil water retention curve (WRC), are identical. Variations of local heterogeneities strongly affect the soil hydraulic properties, and the scale affects the results of the parameter estimations when numerical experiments are conducted. Furthermore, the discrepancy of each curve becomes considerable when moisture content becomes closer to a dry situation. Parameters estimated by UHC are totally different from the ones estimated by WRC. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号