首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2015篇
  免费   486篇
  国内免费   828篇
测绘学   101篇
大气科学   1112篇
地球物理   352篇
地质学   886篇
海洋学   356篇
天文学   27篇
综合类   170篇
自然地理   325篇
  2024年   19篇
  2023年   42篇
  2022年   85篇
  2021年   94篇
  2020年   105篇
  2019年   131篇
  2018年   97篇
  2017年   101篇
  2016年   103篇
  2015年   99篇
  2014年   140篇
  2013年   143篇
  2012年   153篇
  2011年   171篇
  2010年   127篇
  2009年   160篇
  2008年   143篇
  2007年   160篇
  2006年   148篇
  2005年   118篇
  2004年   120篇
  2003年   104篇
  2002年   94篇
  2001年   94篇
  2000年   63篇
  1999年   56篇
  1998年   62篇
  1997年   64篇
  1996年   57篇
  1995年   45篇
  1994年   50篇
  1993年   39篇
  1992年   30篇
  1991年   27篇
  1990年   18篇
  1989年   16篇
  1988年   25篇
  1987年   5篇
  1986年   5篇
  1985年   3篇
  1984年   5篇
  1982年   1篇
  1981年   1篇
  1978年   5篇
  1973年   1篇
排序方式: 共有3329条查询结果,搜索用时 453 毫秒
31.
通过对新密煤田地质条件、构造条件、煤系岩石的放射性特征、下热水的水文地球化学、气体成分等特征的研究,认为形成新密煤田地热资源的热源是来自硫化矿物生热、岩浆余热以及煤系地层岩石放射性物质产热的学说证据不足;而新密煤田的水文地质条件,地质构造条件为该区地下水的深循环提供了条件,故而在该区形成了水热型的中低温地热资源.  相似文献   
32.
合肥市夏季热岛特征研究   总被引:8,自引:1,他引:8  
根据2002牟夏季高温期间合肥市城市小气候考察的资料,分析了合肥市夏季城市热岛特征以及热岛强度的历史变化。结果表明:1)合肥市夏季热岛强度的日变化与冬季明显不同,夏季晴天一天中热岛强度只出现一个峰值,其基本特征与Oke提出的理想状态下的城市热岛强度日变化的模式曲线非常相似,而冬季与高纬地区的加拿大卡尔加里城市的热岛强度日变化特征接近。这反映了冬、夏两季人类活动、能源消耗量的不同;2)随着城市范围的扩大和城市绿化工程的实施,合肥市热岛面积、分布形状有了一定的改变,但主要分布特征和强度基本没有变化。  相似文献   
33.
城市热岛效应监测方法研究进展   总被引:16,自引:0,他引:16  
城市热岛效应是一种由于城市建筑及人们活动导致的热量在城区空间范围内聚集的现象,是城市气候最明显的特征之一.由于城市热岛影响因素以及相互关系的复杂性,为了精确细致地描述其时空分布,人们采用了多种方法来研究城市热岛现象,主要归纳为:气象站法、定点观测法、运动样带法、遥感测定法以及模拟预测等.最后,认为各种测定方法都存在一定的缺陷,建议多种测定方法综合运用.  相似文献   
34.
通过遥感技术与地面测定相结合的方法,对北京城市热岛现状作观测研究,得到北京城市地面的温度分布特点。使用北京大学城市边界层模式从气象观点就“楔形绿地”规划对北京城市气候的影响进行研究和评价,模式通过对城市地表复杂性和多样性的特征进行细致描述,建立了一个细致模拟城市特点的城市边界层能量平衡模式,并用此能量平衡模式得到的地面温度作为下边界条件,中尺度气象模式MM5做初始场和侧边界条件,建立一个最小分辨率为500 m的城市边界层模式系统,来研究城市边界层在中尺度背景场作用下的精细结构。通过个例模拟,模式能够较准确地模拟城市边界层的风温场分布情况,可以用来对楔形绿地规划进行模拟试验。通过对规划后的气象场在特定的气象条件下进行模拟,结果显示,建造大型的楔形绿地后,绿地区域及绿地周围约1 km以内的地区温度有所降低,降低的程度由规划前后的地表类型改变的剧烈程度、风速大小及与绿地的距离决定,但是这种规划方案却会因城市的下风方向的风速减小而导致通风不畅。  相似文献   
35.
长江三角洲地区水和热通量的时空变化特征及影响因子   总被引:9,自引:2,他引:9  
文中利用改进的K B模式和牛顿扩散方法及 196 1年以来的长江三角洲 (2 8~ 33°N ,118~ 12 3°E)地区的 4 8个测站的常规气象资料 ,估计了该地区近 4 0a来的蒸散量和感热通量。结合该地区的气温、太阳辐射等气候资料和 196 0年以来该区域土地资源利用变化等有关信息对该地区的潜热通量和感热通量的时 空间变化特征及其可能成因进行了综合分析。结果认为该地区自 2 0世纪 70年代开始平均蒸散量有逐渐减小的趋势 ,与 1980年相比 ,1998年区域年平均蒸散量减小了 2 4mm。区域平均感热通量与蒸散量相比在此期间变化并不明显。通过对该地区的云量、太阳辐射及土地利用变化资料分析认为 ,造成该地区平均蒸散量减少趋势的的原因之一是用于蒸发的能量即太阳辐射的减少 ,而造成太阳辐射减少的可能原因为云量及大气透明度的变化所至 ;原因之二是该地区地表覆盖条件的改变。近 2 0a来 ,该地区的水田、旱地及水域面积占总面积的比率分别减少 1.35 3% ,4 .4 4 2 %和2 .5 97% ,而城镇建设、工矿及其它建设用地面积则增加 3.345 %。耕地及水面的减小和城镇及建设用地面积的增加从整体上使区域平均蒸发量减少。  相似文献   
36.
乾安地区盐碱地显热通量的测量   总被引:8,自引:0,他引:8  
文中给出了用大孔径闪烁仪在 2 0 0 0年生长季观测到的盐碱地区显热通量的主要结果 ,并初步计算了当地的水热平衡状况。结果表明 :乾安盐碱地区显热通量占净辐射量的百分比在干旱、非生长季达到 6 5 % ,在多雨、植被生长季仅为 11% ;显热通量因降水而明显降低 ,幅度与降水强度有关 ,反映了当地的气候和土壤特征。文中还把LAS的测量结果与传统的梯度法作了比较 ,结果基本一致。  相似文献   
37.
中国西北部盆地岩石热导率和生热率特征   总被引:19,自引:0,他引:19       下载免费PDF全文
邱楠生 《地质科学》2002,37(2):196-206
本文根据大量实测数据,首次系统地报道了中国西北地区塔里木盆地、准噶尔盆地和柴达木盆地内的岩石热导率、岩石放射性生热率数据及其分布特征.对600多个岩石热导率和100多个实测岩石生热率的统计分析表明,沉积盆地中岩石的热物理性质与其岩性、埋藏深度和地层时代密切相关.随深度和地层时代的加大,岩石热导率增大;塔里木盆地的岩石热导率的总体平均值最大,而柴达木盆地的最小.岩石生热率在上地壳的分布是随深度的增加而减小的,但在沉积盆地的深度范围内几乎不变,其分布是均匀的,仅不同岩性的生热率差别较大.估算的岩石放射性生热产生的热量可以占到盆地地表热流的25%~45%.因此,岩石热物理性质的参数不仅与盆地的地温分布和大地热流特征密切相关,还可以为该地区盆地热历史恢复及深部地球物理的研究提供有效的参数和边界条件.  相似文献   
38.
Radiogenic heat production (RHP) represents a significant fraction of surface heat flow, both on cratons and in sedimentary basins. RHP within continental crust—especially the upper crust—is high. RHP at any depth within the crust can be estimated as a function of crustal age. Mantle RHP, in contrast, is always low, contributing at most 1 to 2 mW/m2 to total heat flow. Radiogenic heat from any noncrystalline basement that may be present also contributes to total heat flow. RHP from metamorphic rocks is similar to or slightly lower than that from their precursor sedimentary rocks. When extension of the lithosphere occurs—as for example during rifting—the radiogenic contribution of each layer of the lithosphere and noncrystalline basement diminishes in direct proportion to the degree of extension of that layer. Lithospheric RHP today is somewhat less than in the distant past, as a result of radioactive decay. In modeling, RHP can be varied through time by considering the half lives of uranium, thorium, and potassium, and the proportional contribution of each of those elements to total RHP from basement. RHP from sedimentary rocks ranges from low for most evaporites to high for some shales, especially those rich in organic matter. The contribution to total heat flow of radiogenic heat from sediments depends strongly on total sediment thickness, and thus differs through time as subsidence and basin filling occur. RHP can be high for thick clastic sections. RHP in sediments can be calculated using ordinary or spectral gamma-ray logs, or it can be estimated from the lithology.  相似文献   
39.
40.
Global heat budget, plate tectonics and climatic change   总被引:1,自引:0,他引:1  
For the past 2000 Ma, the temperature of the Earth's surface has fluctuated around a mean similar to that of today, although individual locations have undergone long-term changes of ∼30°C at different times in different places. Water bodies absorb at least five times as much solar radiation as land surfaces, and ocean currents transport the excess heat absorbed in the tropics towards the poles. Changes in the distribution of land and sea due to plate tectonics explain the major temperature fluctuations (>25°C) around the globe in the last 350 Ma, and are first-order controls. Large-scale changes in ocean currents and thermohaline circulations are probably second-order controls (15–25°C). The Milankovitch orbital cycles are third-order controls producing variations in air temperature of the order of 10°C, while massive volcanic eruptions and changes in carbon dioxide are amongst the fourth-order controls producing minor perturbations (<5°C). The major climatic fluctuations are continuous but regional in effect and not global. Extraterrestrial factors may not cause major changes in climate when viewed from a geological perspective.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号