首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4438篇
  免费   1085篇
  国内免费   2041篇
测绘学   9篇
大气科学   1篇
地球物理   370篇
地质学   6590篇
海洋学   280篇
天文学   2篇
综合类   194篇
自然地理   118篇
  2024年   34篇
  2023年   101篇
  2022年   117篇
  2021年   171篇
  2020年   193篇
  2019年   213篇
  2018年   226篇
  2017年   223篇
  2016年   282篇
  2015年   250篇
  2014年   318篇
  2013年   322篇
  2012年   383篇
  2011年   337篇
  2010年   305篇
  2009年   298篇
  2008年   314篇
  2007年   302篇
  2006年   340篇
  2005年   294篇
  2004年   252篇
  2003年   235篇
  2002年   214篇
  2001年   210篇
  2000年   202篇
  1999年   218篇
  1998年   176篇
  1997年   162篇
  1996年   141篇
  1995年   98篇
  1994年   125篇
  1993年   108篇
  1992年   98篇
  1991年   80篇
  1990年   55篇
  1989年   33篇
  1988年   30篇
  1987年   40篇
  1986年   18篇
  1985年   12篇
  1984年   10篇
  1983年   6篇
  1981年   1篇
  1979年   1篇
  1978年   7篇
  1977年   2篇
  1976年   2篇
  1973年   2篇
  1972年   1篇
  1954年   1篇
排序方式: 共有7564条查询结果,搜索用时 15 毫秒
41.
Grain size and grain shape analysis of fault rocks   总被引:4,自引:0,他引:4  
  相似文献   
42.
The major continental blocks in northeastern Asia are the North China block and the South China block, which have collided starting from the Korean peninsula. Geologic and geophysical interpretations reveal a well defined suture zone in northeastern China from Qinling through Dabie to Jiaodong. The discovery of high-pressure metamorphic rocks in the Hongseong area of the Korean peninsula, prominent evidence for the collision zone, indicates extension of the collision zone in northeastern China into the Korean peninsula. Interpretation of the GRACE satellite gravity dataset shows two prominent structural boundaries in the Yellow Sea. One extends from the Jiaodong Belt in eastern China to the Imjingang Belt in the Korean peninsula. The other extends from near Nanjing, eastern China, to Hongseong. Tectonic movement in or near the suture zone may be responsible for seismic activity in the western Korean peninsula and the development of the Yellow Sea sedimentary basin.  相似文献   
43.
The Sivamalai alkaline complex lies at the southern margin of the Cauvery Shear System that separates the Archaean and Proterozoic domains of the Southern Granulite Terrain in India. U–Pb TIMS dating of zircon from a pegmatitic syenite sample in the complex yields a concordant age of 590.2 ± 1.3 (2σ) Ma which is interpreted to date the intrusion of the alkaline rocks. A lower concordia intercept at 168 ± 210 Ma defined by two grains with high common lead may indicate post-magmatic disturbances due to recrystallisation which is also evident in the CL images of the zircons. EPMA dating of monazite from a post-kinematic pegmatite which intrudes the crystalline basement hosting the alkaline rocks yields an age of 478 ± 29 (2σ) Ma and provides a lower bracket for the main phase of tectonism in this part of the Southern Granulite Terrain. The Pan-African high-grade metamorphism and ductile deformation has thus most likely affected the alkaline rocks. This is supported by the presence of a metamorphic foliation and extensive recrystallisation textures seen in the rocks. The major and trace element concentrations measured on selected samples reveals the presence of both enriched and depleted rock types. The enriched group includes ferrosyenite and nepheline syenite while the depleted group has only nepheline syenites. The trace element depletion of some nepheline syenites is interpreted to be a result of fractional crystallization involving the removal of accessory phases like zircon, titanite, apatite and allanite.  相似文献   
44.
The Bridport Sand Formation is an intensely bioturbated sandstone that represents part of a mixed siliciclastic‐carbonate shallow‐marine depositional system. At outcrop and in subsurface cores, conventional facies analysis was combined with ichnofabric analysis to identify facies successions bounded by a hierarchy of key stratigraphic surfaces. The geometry of these surfaces and the lateral relationships between the facies successions that they bound have been constrained locally using 3D seismic data. Facies analysis suggests that the Bridport Sand Formation represents progradation of a low‐energy, siliciclastic shoreface dominated by storm‐event beds reworked by bioturbation. The shoreface sandstones form the upper part of a thick (up to 200 m), steep (2–3°), mud‐dominated slope that extends into the underlying Down Cliff Clay. Clinoform surfaces representing the shoreface‐slope system are grouped into progradational sets. Each set contains clinoform surfaces arranged in a downstepping, offlapping manner that indicates forced‐regressive progradation, which was punctuated by flooding surfaces that are expressed in core and well‐log data. In proximal locations, progradational shoreface sandstones (corresponding to a clinoform set) are truncated by conglomerate lags containing clasts of bored, reworked shoreface sandstones, which are interpreted as marking sequence boundaries. In medial locations, progradational clinoform sets are overlain across an erosion surface by thin (<5 m) bioclastic limestones that record siliciclastic‐sediment starvation during transgression. Near the basin margins, these limestones are locally thick (>10 m) and overlie conglomerate lags at sequence boundaries. Sequence boundaries are thus interpreted as being amalgamated with overlying transgressive surfaces, to form composite erosion surfaces. In distal locations, oolitic ironstones that formed under conditions of extended physical reworking overlie composite sequence boundaries and transgressive surfaces. Over most of the Wessex Basin, clinoform sets (corresponding to high‐frequency sequences) are laterally offset, thus defining a low‐frequency sequence architecture characterized by high net siliciclastic sediment input and low net accommodation. Aggradational stacking of high‐frequency sequences occurs in fault‐bounded depocentres which had higher rates of localized tectonic subsidence.  相似文献   
45.
At the eastern margin of the Bohemian Massif (Variscan belt of Central Europe), large bodies of felsic granulite preserve mineral assemblages and structures developed during the early stages of exhumation of the orogenic lower continental crust within the Moldanubian orogenic root. The development of an early steep fabric is associated with east–west-oriented compression and vertical extrusion of the high-grade rocks into higher crustal levels. The high-pressure mineral assemblage Grt-Ky-Kfs-Pl-Qtz-Liq corresponds to metamorphic pressures of ∼18 kbar at ∼850 °C, which are minimum estimates, whereas crystallization of biotite occurred at 13 kbar and ∼790 °C during decompression with slight cooling. The late stages of the granulite exhumation were associated with lateral spreading of associated high-grade rocks over a middle crustal unit at ∼4 kbar and ∼700 °C, as estimated from accompanying cordierite-bearing gneisses. The internal structure of a contemporaneously intruded syenite is coherent with late structures developed in felsic granulites and surrounding gneisses, and the magma only locally explored the early subvertical fabric of the felsic granulite during emplacement. Consequently, the emplacement age of the syenite provides an independent constraint on the timing of the final stages of exhumation and allows calculation of exhumation and cooling rates, which for this part of the Variscan orogenic root are 2.9–3.5 mm yr−1 and 7–9.4 °C Myr−1, respectively. The final part of the temperature evolution shows very rapid cooling, which is interpreted as the result of juxtaposition of hot high-grade rocks with a cold upper-crustal lid.  相似文献   
46.
Besides granites of the ilmenite series, in which the anisotropy of magnetic susceptibility (AMS) is mainly controlled by paramagnetic minerals, the AMS of igneous rocks is commonly interpreted as the result of the shape-preferred orientation of unequant ferromagnetic grains. In a few instances, the anisotropy due to the distribution of ferromagnetic grains, irrespective of their shape, has also been proposed as an important AMS source. Former analytical models that consider infinite geometry of identical and uniformly magnetized and coaxial particles confirm that shape fabric may be overcome by dipolar contributions if neighboring grains are close enough to each other to magnetically interact. On these bases we present and experimentally validate a two-grain macroscopic numerical model in which each grain carries its own magnetic anisotropy, volume, orientation and location in space. Compared with analytical predictions and available experiments, our results allow to list and quantify the factors that affect the effects of magnetic interactions. In particular, we discuss the effects of (i) the infinite geometry used in the analytical models, (ii) the intrinsic shape anisotropy of the grains, (iii) the relative orientation in space of the grains, and (iv) the spatial distribution of grains with a particular focus on the inter-grain distance distribution. Using documented case studies, these findings are summarized and discussed in the framework of the generalized total AMS tensor recently introduced by Cañon-Tapia (Cañon-Tapia, E., 2001. Factors affecting the relative importance of shape and distribution anisotropy in rocks: theory and experiments. Tectonophysics, 340, 117–131.). The most important result of our work is that analytical models far overestimate the role of magnetic interaction in rock fabric quantification. Considering natural rocks as an assemblage of interacting and non-interacting grains, and that the effects of interaction are reduced by (i) the finite geometry of the interacting clusters, (ii) the relative orientation between interacting grains, (iii) their heterogeneity in orientation, shape and bulk susceptibility, and (iv) their inter-distance distribution, we reconcile analytical models and experiments with real case studies that minimize the role of magnetic interaction onto the measured AMS. Limitations of our results are discussed and guidelines are provided for the use of AMS in geological interpretation of igneous rock fabrics where magnetic interactions are likely to occur.  相似文献   
47.
The Tso Morari Complex, which is thought to be originally the margin of the Indian continent, is composed of pelitic gneisses and schists including mafic rock lenses (eclogites and basic schists). Eclogites studied here have the mineral assemblage Grt + Omp + Ca-Amp + Zo + Phn + Pg + Qtz + Rt. They also have coesite pseudomorph in garnet and quartz rods in omphacite, suggesting a record of ultrahigh-pressure metamorphism. They occur only in the cores of meter-scale mafic rock lenses intercalated with the pelitic schists. Small mafic lenses and the rim parts of large lenses have been strongly deformed to form the foliation parallel to that of the pelitic schists and show the mineral assemblages of upper greenschist to amphibolite facies metamorphism. The garnet–omphacite thermometry and the univariant reaction relations for jadeite formation give 13–21 kbar at 600 °C and 16–18 kbar at 750 °C for the eclogite formation using the jadeite content of clinopyroxene (XJd = 0.48).

Phengites in pelitic schists show variable Si / Al and Na / K ratios among grains as well as within single grains, and give K–Ar ages of 50–87 Ma. The pelitic schist with paragonite and phengite yielded K–Ar ages of 83.5 Ma (K = 4.9 wt.%) for paragonite–phengite mixture and 85.3 Ma (K = 7.8 wt.%) for phengite and an isochron age of 91 ± 13 Ma from the two dataset. The eclogite gives a plateau age of 132 Ma in Ar/Ar step-heating analyses using single phengite grain and an inverse isochron age of 130 ± 39 Ma with an initial 40Ar / 36Ar ratio of 434 ± 90 in Ar/Ar spot analyses of phengites and paragonites. The Cretaceous isochron ages are interpreted to represent the timing of early stage of exhumation of the eclogitic rocks assuming revised high closure temperature (500 °C) for phengite K–Ar system. The phengites in pelitic schists have experienced retrograde reaction which modified their chemistry during intense deformation associated with the exhumation of these rocks with the release of significant radiogenic 40Ar from the crystals. The argon release took place in the schists that experienced the retrogression to upper greenschist facies metamorphisms from the eclogite facies conditions.  相似文献   

48.
Compressional and shear wave velocities and attenuation measurements have been carried out in some of the borehole samples of acidic, basic and intermediate granulites of Mahabalipuram, Tamil Nadu, India. The results have been obtained at ambient conditions using ‘time-of-flight’ pulse transmission technique at 1.0 MHz frequency. The results show linear relationships between velocity and density, and velocity and attenuation properties of the rocks. The acidic granulites show lower velocities and higher attenuation than the intermediate and basic granulites. The average values of the Poisson’s ratio of acidic, intermediate and basic granulites have been found to be 0.210, 0.241 and 0.279 respectively. The variations in velocities and attenuation in these low porosity crystalline rocks are found to be strongly influenced by their mineral composition. The laboratory velocity data (extrapolated to high pressure) of the present study and the published field velocity data from deep seismic sounding studies indicate that these granulite facies rocks may belong to mid-crustal depths only.  相似文献   
49.
Systematic field mapping of fracture lineaments observed on aerial photographs shows that almost all of these structures are positively correlated with zones of high macroscopic and mesoscopic fracture frequencies compared with the surroundings. The lineaments are subdivided into zones with different characteristics: (1) a central zone with fault rocks, high fracture frequency and connectivity but commonly with mineral sealed fractures, and (2) a damage zone divided into a proximal zone with a high fracture frequency of lineament parallel, non-mineralized and interconnected fractures, grading into a distal zone with lower fracture frequencies and which is transitional to the surrounding areas with general background fracturing. To examine the possible relations between lineament architecture and in-situ rock stress on groundwater flow, the geological fieldwork was followed up by in-situ stress measurements and test boreholes at selected sites. Geophysical well logging added valuable information about fracture distribution and fracture flow at depths. Based on the studies of in-situ stresses as well as the lineaments and associated fracture systems presented above, two working hypotheses for groundwater flow were formulated: (i) In areas with a general background fracturing and in the distal zone of lineaments, groundwater flow will mainly occur along fractures parallel with the largest in-situ rock stress, unless fractures are critically loaded or reactivated as shear fractures at angles around 30° to σH; (ii) In the influence area of lineaments, the largest potential for groundwater abstraction is in the proximal zone, where there is a high fracture frequency and connectivity with negligible fracture fillings. The testing of the two hypotheses does not give a clear and unequivocal answer in support of the two assumptions about groundwater flow in the study area. But most of the observed data are in agreement with the predictions from the models, and can be explained by the action of the present stress field on pre-existing fractures.  相似文献   
50.
In the Sandıklı (Afyon) region, western Taurides, the Late Proterozoic rocks of the Sandıklı basement complex are composed of low-grade meta-sedimentary rocks (Güvercinoluk Formation) intruded by felsic rocks (Kestel Cayı Porphyroid Suite, KCPS). The KCPS is a deformed and highly sheared, dome-shaped rhyolitic body with a granitic core. Quartz porphyry dikes intrude both the slightly metamorphic igneous and the sedimentary rocks of the basement complex. Both the quartz porphyries and rhyolites were converted into mylonites with relict igneous textures. Geochemical data show that these felsic igneous rocks are subalkaline and mainly granitic in composition with SiO2 >72 wt% and Al2O3 >11.5 wt%. The chondrite-normalized incompatible trace element patterns are characterized by distinct negative Rb, Nb, Sr, P, Ti, and Eu with enrichment in Th, U, La, Ce, Nd, Sm, and Zr. The REE patterns of the felsic rocks indicate a strong enrichment in LREE but display slightly flat HREE patterns. According to geochemical characteristics and petrogenetic modeling, extrusive and intrusive rocks of the KCPS were probably derived from an upper continental crustal source (partial melting of granites/felsic rocks) by 18–20% fractional melting plus 18–20% Rayleigh fractional crystallization, which seems to be the most effective igneous process during the crystallization of the KCPS. Single zircon age data from the granitoids and fossils from the disconformably overlying sedimentary successions indicate that the metamorphism and the igneous event in the Taurides are related to the Cadomian orogeny. Based on the geological, geochemical and petrogenetic correlation of the post-collisional granitoids it is further suggested that the Tauride belt in western central Turkey was in a similar tectonic setting to the Gondwanan terranes in North Africa (Younger Granitoids) and southern Europe (Spain, France, Bohemia, Brno Massifs) during the Late Cadomian period.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号