首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   43篇
  国内免费   156篇
地球物理   10篇
地质学   340篇
海洋学   1篇
综合类   8篇
自然地理   4篇
  2024年   3篇
  2023年   2篇
  2022年   5篇
  2021年   14篇
  2020年   9篇
  2019年   14篇
  2018年   10篇
  2017年   9篇
  2016年   8篇
  2015年   14篇
  2014年   11篇
  2013年   24篇
  2012年   20篇
  2011年   17篇
  2010年   10篇
  2009年   13篇
  2008年   8篇
  2007年   15篇
  2006年   11篇
  2005年   11篇
  2004年   16篇
  2003年   6篇
  2002年   7篇
  2001年   11篇
  2000年   13篇
  1999年   17篇
  1998年   10篇
  1997年   14篇
  1996年   4篇
  1995年   4篇
  1994年   9篇
  1993年   6篇
  1992年   4篇
  1991年   6篇
  1990年   4篇
  1989年   1篇
  1987年   2篇
  1984年   1篇
排序方式: 共有363条查询结果,搜索用时 15 毫秒
201.
东喜马拉雅构造结南迦巴瓦岩群花岗质片麻岩的初步研究   总被引:5,自引:0,他引:5  
野外地质填图和研究发现,东喜马拉雅构造结高喜马拉雅结晶岩系中有古老的花岗岩侵入,并在鲁霞地区圈定了9个花岗质侵入体。古老的花岗质岩石主要侵位于南迦巴瓦岩群直白岩组中,与南迦巴瓦岩群一起经历了麻粒岩相变质作用而形成花岗质片麻岩套。岩石类型有花岗闪长质片麻岩、黑云母花岗质片麻岩、闪长质片麻岩等。岩石化学研究表明这些花岗片麻岩套具“S”型特征,可能有深部幔源物质的加入。花岗岩形成深度在2~5km之间,侵位时代为552~525 Ma,为新元古代晚期,属泛非期陆内演化阶段的产物。高喜马拉雅地区在元古宙末期形成了结晶基底。  相似文献   
202.
通过对中国大陆科学钻探工程主孔花岗质片麻岩进行详细的岩石磁学研究及岩石矿物学分析表明: 花岗质片麻岩磁化率(0.570×10-7~120.450×10-7m3·kg-1, 平均29.996×10-7m3·kg-1)在主孔所有岩石中仅次于蛇纹石化石榴石橄榄岩, 而其天然剩余磁化强度(0.002×10-3~2.109×10-3Am2·kg-1, 平均0.210×10-3Am2·kg-1)则是所有岩性中最低的.磁化率随温度变化曲线、交变退磁曲线及磁滞回线特征表明, 花岗质片麻岩中磁性矿物组合主要成分为磁铁矿, 小部分样品中含有赤铁矿, 其中磁铁矿以多畴为主, 伪单畴磁铁矿仅在少量样品中出现.和同为完全退变质岩的角闪岩(完全退变质榴辉岩)相比, 花岗质片麻岩具有相似的磁性矿物组合, 但其磁铁矿的颗粒明显较大.多畴磁铁矿的形成, 可能和超高压变质岩折返过程中, 花岗质片麻岩较强的流体活动相关.部分分布于花岗质片麻岩主体岩性段外的样品, 具有较高的天然剩余磁化强度, 则可能反映了花岗质片麻岩及周围榴辉岩之间的流体交换.   相似文献   
203.
错那洞穹隆是藏南特提斯喜马拉雅地区新发现的一个片麻岩穹隆构造。穹隆核部发育一套早古生代眼球状片麻岩。本文在野外地质调查的基础上,利用LA-(MC)-ICP-MS对花岗质片麻岩2个样品的锆石开展U-Pb年代学和Lu-Hf同位素分析。片麻岩中的锆石发育核-幔-边结构,核部为具溶蚀港湾结构的继承锆石,幔部为具韵律(震荡)环带的岩浆锆石,边部(增生边)为重熔变质成因的黑锆石。岩浆锆石幔部的~(206)Pb/~(238)U年龄加权平均值为(500.6±2.6)Ma~(501.1±2.5)Ma,代表该片麻岩的早古生代岩浆结晶年龄。边部变质锆石的新生代重熔年龄为(37.7±0.5)Ma,可能代表藏南拆离系的启动时间。早古生代岩浆锆石幔部的ε_(Hf)(t)值为-2.1-+5.3 (平均值为+2.2),Hf同位素两阶段模式年龄(TDM2)为1.1~1.6 Ga(平均值为1.3 Ga),表明其源岩起源于高喜马拉雅元古宙地层的部分熔融。结合区域内早古生代岩浆活动和新生代穹隆构造变质事件,本文认为错那洞花岗质片麻岩的形成受控于早古生代原特提斯洋壳板片向冈瓦纳大陆下俯冲的造山作用,同时记录了新生代印度一欧亚大陆碰撞造山后的变质和深熔事件。  相似文献   
204.
The Achankovil Zone of southern India, a NW–SE trending lineament of 8–10 km in width and > 100 km length, is a kinematically debated crustal feature, considered to mark the boundary between the Madurai Granulite Block in the north and the Trivandrum Granulite Block in the south. Both these crustal blocks show evidence for ultrahigh-temperature metamorphism during the Pan-African orogeny, although the exhumation styles are markedly different. The Achankovil Zone is characterized by discontinuous strands of cordierite-bearing gneiss with an assemblage of cordierite + garnet + quartz + plagioclase + spinel + ilmenite + magnetite ± orthopyroxene ± biotite ± K-feldspar ± sillimanite. The lithology preserves several peak and post-peak metamorphic assemblages including: (1) orthopyroxene + garnet, (2) perthite and/or anti-perthite, (3) cordierite ± orthopyroxene corona around garnet, and (4) cordierite + quartz symplectite after garnet. We estimate the peak metamorphic conditions of these rocks using orthopyroxene-bearing geothermobarometers and feldspar solvus which yield 8.5–9.5 kbar and 940–1040 °C, the highest PT conditions so far recorded from the Achankovil Zone. The retrograde conditions were obtained from cordierite-bearing geothermobarometers at 3.5–4.5 kbar and 720 ± 60 °C. From orthopyroxene chemistry, we record a multistage exhumation history for these rocks, which is closely comparable with those reported in recent studies from the Madurai Granulite Block, but different from those documented from the Trivandrum Granulite Block. An evaluation of the petrologic and geochronologic data, together with the nature of exhumation paths leads us to propose that the Achankovil Zone is probably the southern flank of the Madurai Granulite Block, and not a unit of the Trivandrum Granulite Block as presently believed. Post-tectonic alkali granites that form an array of “suturing plutons” along the margin of the Madurai Granulite Block and within the Achankovil Zone, but are absent in the Trivandrum Granulite Block, suggest that the boundary between the Madurai Granulite Block and the Trivandrum Granulite Block might lie along the Tenmalai shear zone at the southern extremity of the Achankovil Zone.  相似文献   
205.
通过对桐柏山东段广水-孝子店一带桐柏杂岩及红安群的构造解析,提出桐柏杂岩中发育-北西-南东走向并向南东倾伏的大型A型背形.利用变形矿物变质温压计估算其形成温度为530~690℃,压力为0.52~0.62GPa,相当于18~22km深的中地壳流动壳层.据A型背形不同部位物质运动特点分析,其形成很可能是古元古代晚期华北古板块与杨子古板块碰撞对接造成桐柏杂岩向南东方向侧向挤出的结果  相似文献   
206.
胶东东部地区的基底片麻岩以牟平-海阳断裂为界,两侧在岩性组合和地球化学性质上完全不同,本文认为该断裂应代表苏鲁造山带的西北边界(北段)。断裂西侧岩性包括花岗闪长质、奥长花岗质和花岗质,地球化学上表现为低硅(SiO2:64.16~71.76%)、高铝(Al2O3=15.60-18.51%)、显著的Ba和Sr正异常、强烈的稀土元素分馏程度(LaN/YbN=15.77~68.19)和贫重稀土元素(YbN=2.9-4.4)、Eu异常不明显(δEu=0.86~1.02),具典型的太古代高铝TTG岩石组合的特征。而东侧新元古代的基底片麻岩从地球化学上可分为高钾的Ⅰ型花岗质片麻岩和富钠的A型花岗质片麻岩。前者总体表现为富钾(K2O/Na2O比接近或大于1)和亚铝质,强烈亏损Sr、Nb和Ta,轻稀土元素之间的分馏程度强(LaN/SmN=4.21~5.37),而重稀土元素之间几乎无分馏(GdN/YbN:0.78~1.54),负Eu异常较强(δEu=0.47~0.61),岩石地球化学特征显示它们的原岩类似于活动大陆边缘的Ⅰ型花岗岩类。而后者则以偏碱和富钠(Na2O/K2O=1.06~1.77),高Y(20.4~52.9μg/g)、Zr(218~39μg/g)、Ga(18.8~22.9μg/g)及稀土元素丰度为特征,稀土元素分馏程度强(LaN/YbN=11.30~19.09),弱到中等程度的负Eu异常(δEu=0.94~0.65),强烈亏损Sr为显著特征,Nb和Ta相对于La也强烈亏损,而Ba则表现出明显的正异常。推测Ⅰ型花岗岩是在与俯冲有关的构造环境下,压力0.8~1.0Gpa条件下,由受俯冲板片脱水交代的镁铁质下地壳(26~33km)部分熔融形成的。而A型花岗岩则是在Ⅰ型花岗质岩浆形成后,由脱水的紫苏辉石质残留下地壳在温度大于900℃的条件下再一次部分熔融形成的。相对于Ⅰ型花岗岩,A型花岗岩中可能有更多的大洋岩石圈的组份被卷入。  相似文献   
207.
大别山超高压正片麻岩:岩石学及变质演化   总被引:10,自引:0,他引:10  
刘晓春  王明再  曲玮 《矿物学报》1995,15(2):154-162,T001
大别山超高压片麻岩与正常(中低压)片麻岩呈互层状产生,原岩相当于安山质火山岩。超高压片麻岩的特征矿物组合为石榴子石+绿辉石+多硅白云母+斜黝帘石+石英/柯石英+金红石±蓝晶石±纳云母,高压矿物包体、冠状反应结构、假象结构和局部不平衡结构可作为其岩相学鉴别标志。它们经历了与含柯石英榴辉岩可对比的超高压变质(>2.7GPa、672~725℃)和中低压绿帘角闪岩相退变质(0.3~0.7GPa、450~520℃)两个主要演化阶段,其退变质作用与围岩区域变质作用的一致性有可能说明二者自始至终经历了同一演化过程。  相似文献   
208.
Granulite facies tonalitic gneiss, mafic granulite and late metadolerite dykes from Bremer Bay in the Mesoproterozoic Albany Mobile Belt yield palaeomagnetic remanence that were acquired between ca 1.2 Ga and 1.1 Ga. A well‐constrained pole (66.6°N, 303.7°E) fits the ca 1.2 Ga part of the Precambrian Australian apparent polar wander path. This pole is in agreement with the high‐latitude position of Australia at ca 1.2–1.1 Ga shown on some Rodinia reconstructions. More data are required before any significance can be attributed to a second, poorly defined pole (41.8°S, 243.7°E) that falls at some distance from the ca 0.8 Ga part of the Australian apparent polar wander path. Magnetic anisotropy measurements from all samples except late granite dykes indicate northeast‐southwest elongation (i.e. parallel to the local trend of the orogenic belt) and northwest‐southeast contraction. This is in agreement with the orientation of principal strain axes deduced from structures formed during late stages of ductile deformation. The mean magnetic fabric lineation (long axis of the strain ellipsoid) is subparallel to a mineral elongation lineation and the axes of late upright to inclined folds. Short axes of the strain ellipsoid determined from magnetic fabric measurements are in a similar orientation to poles to the axial surfaces of these folds and to the associated cleavage. This mean shortening axis bisects late conjugate ductile shear zones that overprint the folds. This study has shown that structurally complex high‐grade gneisses and intrusive rocks with variable timing relationships may yield meaningful palaeomagnetic results for late stages of metamorphism. Magnetic anisotropy analysis is also seen to be a valuable tool in providing principal strain directions for late ductile deformation.  相似文献   
209.
彭游博 《地质通报》2020,39(5):670-680
辽北开原地区新太古代变质深成岩位于华北板块北缘陆缘活动带东段,主要岩性为二长花岗质片麻岩、花岗闪长质片麻岩和英云闪长质片麻岩,其中英云闪长质片麻岩LA-ICP-MS锆石207Pb/206Pb年龄加权平均值为2489.6±9.1 Ma,为新太古代。新太古代变质深成岩属高钾钙碱性-钾玄岩,准铝-过铝质岩石系列,轻稀土元素较富集,重稀土元素相对亏损,具有下地壳或太古宙沉积岩部分熔融形成的特征。通过岩石学、岩石地球化学和构造环境及就位机制分析,结合邻区构造演化研究,认为辽北开原地区变质深成岩岩浆来自较浅的基性古陆壳局部熔融。大地构造位置可能处在洋壳与陆壳的接触带,说明新太古代清河断裂附近可能出现陆壳碰撞增生活动。闪长质-石英闪长质-花岗闪长质-二长花岗质片麻岩体现了陆壳经历长时间的增生、造陆活动,已由早期的基性陆壳向现今的硅铝质陆壳转变。  相似文献   
210.
本文用变温盒、弗氏台和油浸法联合测定了河南太古代片麻岩以及西藏珠峰地区元古代和第三纪片麻岩中斜长石的成分和有序度。太古代片麻岩中斜长石的成分曲线正态分布,峰值An为22和27;其有序度高,有100—90极密区。元右代片麻岩中斜长石成分与太右代类似,有序度也高,但100—90有序度极密区范围较小。第三纪片麻岩中斜长石的成分曲线形态复杂,有多峰值An出现。有序安明显变低,不出现100—90有序度的极密区。因此片麻岩中斜长石的成分和有序度显然与其形成的时代和热历史有关。同样其产出的构造部位也有一定影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号