首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   397篇
  免费   95篇
  国内免费   120篇
测绘学   3篇
大气科学   13篇
地球物理   151篇
地质学   357篇
海洋学   32篇
综合类   8篇
自然地理   48篇
  2024年   3篇
  2023年   7篇
  2022年   8篇
  2021年   24篇
  2020年   19篇
  2019年   26篇
  2018年   32篇
  2017年   18篇
  2016年   25篇
  2015年   24篇
  2014年   21篇
  2013年   36篇
  2012年   30篇
  2011年   34篇
  2010年   15篇
  2009年   35篇
  2008年   24篇
  2007年   22篇
  2006年   32篇
  2005年   28篇
  2004年   24篇
  2003年   23篇
  2002年   14篇
  2001年   11篇
  2000年   16篇
  1999年   9篇
  1998年   10篇
  1997年   4篇
  1996年   6篇
  1995年   7篇
  1994年   6篇
  1993年   6篇
  1992年   2篇
  1991年   1篇
  1990年   4篇
  1988年   3篇
  1987年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有612条查询结果,搜索用时 0 毫秒
241.
陈群  彭君  朱分清 《岩土力学》2016,37(Z1):295-300
渗流作用下土层之间的接触面是较易发生渗透破坏的薄弱环节。在开展砂砾石渗透破坏试验研究的基础上,针对砂砾石与砂的接触面渗流及渗透破坏特性,利用大型竖向渗透仪和自主研制的环状径向水平渗透仪,研究了竖向和水平渗流作用下接触面渗流和渗透破坏的影响因素及接触冲刷的发生、发展过程。研究结果表明,典型的砂砾石与砂的接触冲刷破坏过程可分为稳定渗流阶段、过渡阶段和破坏阶段3个阶段,可用2个特征水力坡降进行划分,稳定渗流阶段与过渡阶段的分界点对应的水力坡降称为启动坡降,过渡阶段与破坏阶段的分界点对应的水力坡降称为破坏坡降;砂砾石与砂组合试样的渗透系数随砂砾石密度的增大、颗粒变细而减小,砂砾石与砂接触冲刷的抗渗坡降则随砂砾石密度的增大、颗粒变细而增大,在水平渗流情况下试样的渗透系数较竖向的大,但接触冲刷的抗渗坡降较竖向的小。  相似文献   
242.
泥皮厚度对结构接触面力学特性影响的试验研究   总被引:6,自引:1,他引:6  
针对实际工程中砂砾石与结构物所形成接触面,采用联合研制的大型叠环单剪仪对砂砾石与夹不同厚度泥皮混凝土接触面力学特性进行了相关试验研究。结果表明,泥皮厚度对结构接触面的强度影响显著,且存在两临界厚度值(记为H1和H2,且H1 < H2)。当泥皮厚度小于临界厚度值H1时,接触面表现为砂砾石与混凝土板接触面特征,其剪应力与相对剪切位移关系曲线呈现明显的双曲线关系,可用双曲线模型进行描述;当泥皮厚度介于两临界厚度值之间时,接触面表现为泥皮与混凝土板接触面,达到破坏阶段后切向变形呈现明显的刚塑性的变形特征,可用刚塑性模型进行描述;当泥皮厚度大于临界厚度值H2时,剪切破坏并不发生在接触面处,而是发生在泥皮层内部,此时接触面特性即为泥皮剪切特性。  相似文献   
243.
砂田不同覆盖方式对土壤微生物组成的影响   总被引:2,自引:1,他引:2  
为研究砂田(GSMF)表面覆盖的砾石层对土壤微生物组成的影响,于2004年春布设试验,分别为砾石覆盖厚度试验、覆盖砾石粒径试验和不同粒径砾石按不同比例混合覆盖试验。于2009年5月对未经扰动的土壤细菌、真菌、放线菌组成和土壤含水量进行研究,土壤剖面深度分别为0~1 cm、1~2 cm、2~4 cm和4~20 cm。结果表明,砾石覆盖可以增加土壤含水量和土壤微生物数量,当土壤表面覆盖的砾石粒径越小或者组成覆盖层的砾石以小粒径为主时,有利于土壤水分的积累和细菌的生长,反之则利于放线菌的生长,粒径范围在1~8 cm时,较利于真菌生长,在砾石覆盖厚度试验中观察到有超过50%的真菌分布在0~1 cm深的土壤剖面中这一特有现象。砾石层覆盖厚度为7~9 cm时,最适宜微生物生长。  相似文献   
244.
PENG GAO 《Sedimentology》2012,59(6):1926-1935
A recently developed bedload equation (Abrahams & Gao, 2006) has the form ib = ωG3˙4, where ib is the immersed bedload transport rate, ω is the stream power per unit area, G = 1?θc/θ, θ is the dimensionless shear stress and θc is the associated threshold value for the incipient motion of bed grains. This equation has a parsimonious form and provides good predictions of transport rate in both the saltation and sheetflow regimes (i.e. flows with low and high θ values, respectively). In this study, the equation was validated using data independent of those used for developing it. The data represent bedload of identical sizes transported in various steady, uniform, fully rough and turbulent flows over plane, mobile beds. The equation predicted ib quite well over five orders of magnitude. This equation was further compared with six classic bedload equations and showed the best performance. Its theoretical significance was subsequently examined in two ways. First, based on collision theory, the parameter G was related to the ratio of grain‐to‐grain collisions to the total collisions including both grain‐to‐grain and grain‐to‐bed collisions, Pg by Pg = G2, suggesting that G characterizes the dynamic processes of bedload transport from the perspective of granular flow, which partly accounts for the good performance of the equation. Moreover, examining the ability of two common equations to predict bedload in gravel‐bed rivers revealed that G can also be used to simplify equations for predicting transport capacities in such rivers. Second, a simple dimensionless form of the equation was created by introducing B = ib/ω. The theoretical nature of the term B was subsequently revealed by comparing this equation with both the Bagnold model and two commonly used parameters representing dimensionless bedload transport rates.  相似文献   
245.
钱塘江下切河谷充填及其层序地层学特征   总被引:20,自引:0,他引:20  
钱塘江口是世界著名的强潮型河口湾。平面上呈典型的喇叭状,具明显的三分性:上部的正常河流段、中部的河口湾漏斗、下部的口门带。据沉积作用和沉积相组合,钱塘江河口湾的形成及其发育可以分为四个阶段:(1)末次冰期(20000-15000aB,R)──下切河谷形成;(2)冰后期早期海侵(15000-7500aB,P.)─-河口湾充填;(3)最大海侵(7500-6000aB.P.)──海湾形成;(4)海面相对稳定期(6000aB.P.至今)──河口湾发育。其间形成了一套完整的海退-海侵进积旋回沉积层序。下切河谷底部的厚度异常的河床相砂砾层,从形成阶段上看,可以分为两个阶段,早期是河流下切的滞留沉积,晚期是基面抬升河流加积作用形成,它们的界限即为初次海泛面。加积作用形成的河床相砂砾层,有别于滞留沉积作用形成的河床相砂砾层,前者具加积副层序组合、向上变细的正粒序,且形成的地质年代较晚。  相似文献   
246.
准噶尔盆地北缘山前带是我国目前油气勘探的一个重点领域.为了深入探讨山前带沉积研究中存在的疑问,以准北缘哈拉阿拉特山山前春晖探区为对象,综合利用岩芯、钻测井资料及大量沉积学实验手段,对其侏罗系八道湾组沉积特征及物源方向进行研究,证实了该区粗碎屑沉积物主要来自北西方向的哈山山区,属于典型的近源沉积.通过构造、沉积演化史分析与现代沉积考察相结合的方法,总结出了山前带近源砾石高磨圆度的两类成因,分别对应于砾石形成期的滨海环境以及再搬运沉积期的湿地扇环境,最终建立了春晖探区八道湾组湿润型冲积扇沉积相模式.  相似文献   
247.
The question: ‘how does a streambed change over a minor flood?’ does not have a clear answer due to lack of measurement methods during high flows. We investigate bedload transport and disentrainment during a 1.5‐year flood by linking field measurements using fiber optic distributed temperature sensing (DTS) cable with sediment transport theory and an existing explicit analytical solution to predict depth of sediment deposition from amplitude and phase changes of the diurnal near‐bed pore‐water temperature. The method facilitates the study of gravel transport by using near‐bed temperature time series to estimate rates of sediment deposition continuously over the duration of a high flow event coinciding with bar formation. The observations indicate that all gravel and cobble particles present were transported along the riffle at a relatively low Shields Number for the median particle size, and were re‐deposited on the lee side of the bar at rates that varied over time during a constant flow. Approximately 1–6% of the bed was predicted to be mobile during the 1.5‐year flood, indicating that large inactive regions of the bed, particularly between riffles, persist between years despite field observations of narrow zones of local transport and bar growth on the order ~3–5 times the median particle size. In contrast, during a seven‐year flood approximately 8–55% of the bed was predicted to become mobile, indicating that the continuous along‐stream mobility required to mobilize coarse gravel through long pools and downstream to the next riffle is infrequent. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
248.
通过对桂林岩溶盆地内第四纪粘土砾石层调查研究,认为:①粘土砾石层成因不属冰川沉积或湖相沉积,而是山地河流相沉积和再沉积产物。前者时化属中更新世,后者成因复杂,已发现坡积相、洪积相,时代属晚更新世;②漓江溯源侵蚀过程中发生多次袭夺;③岩溶盆地的发育与漓江袭夺控制和影响粘土砾石层的沉积和再沉积。  相似文献   
249.
An understanding of the transport mechanism of gravel-bed rivers is very important for the river management and engineering works. The main objective of this study was to conduct a series of laboratory experiment in a steep flume to investigate the particle segregation and the transport rate of nonuniform gravel. Median sizes of 15 mm and 7.5 mm, and gradation coefficients of 1.5 and 2.0 were selected for the particle size distributions of nonuniform gravel. In addition to the 36 sets of data collected in this study, 635 sets of existing data for gravel with both nonuniform and nearly uniform sizes were analyzed. According to the results of the sieve analysis and the related theory, hiding functions for both particle size distributions of this study were derived. An attempt was made to develop an Einstein-type transport relationship for nonuniform gravel using dimensionless parameters with mean size as a representative particle size. A modified Schoklitsch-type sediment transport equation with a critical unit flow discharge was also developed to reasonably predict the transport rate of gravels. In addition, an artificial neural network (ANN) model with a back-propagation network (BPN) algorithm was also applied in this study.  相似文献   
250.
含石量对土石混合体剪切特性的影响   总被引:1,自引:0,他引:1  
为了探究不同含石量对土石混合体的抗剪强度及剪胀性的影响,利用先进的大型单剪试验仪进行了21组大型单剪试验。试验设计了从0%~80%含石量共7组试验样品,在100、200、300 kPa三种不同的法向压力下进行单剪试验。基于试验结果,分析了含石量对土石混合体的抗剪强度和剪胀、剪缩特性之间的关系。试验结果表明,在相同的法向压力下,随着含石量的增加,土石混合体的内摩擦角及黏聚力总体上有先增大后减小的趋势。当土石混合体在含石量为40%~50%之间时,其抗剪强度最大。研究表明:土石混合体抗剪强度受到土石混合体孔隙比的影响,同时随着含石量的增加,土石混合体中的结构形式及主导颗粒也相应的发生变化。当含石量在0%~20%之间时,细集料在土石混合体中占主导地位,土石混合体为悬浮密实结构,此时土石混合体的抗剪强度与基质颗粒的性质相近;当含石量在20%~50%时,土石混合体为骨架孔隙结构,随着含石量的增加,土石混合体的骨架逐渐形成,颗粒之间咬合力增加,使得黏聚力及内摩擦角都有明显提高;当含石量超过50%之后,土石混合体表现为骨架密实结构,孔隙率开始上升并且细粒料开始大幅减少,细集料不能充分填充块石之间的孔隙,于是土石混合体抗剪强度开始下降。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号