首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1012篇
  免费   158篇
  国内免费   226篇
大气科学   1篇
地球物理   312篇
地质学   851篇
海洋学   46篇
天文学   7篇
综合类   31篇
自然地理   148篇
  2024年   5篇
  2023年   33篇
  2022年   40篇
  2021年   44篇
  2020年   45篇
  2019年   51篇
  2018年   44篇
  2017年   51篇
  2016年   38篇
  2015年   37篇
  2014年   46篇
  2013年   81篇
  2012年   47篇
  2011年   61篇
  2010年   35篇
  2009年   62篇
  2008年   62篇
  2007年   59篇
  2006年   72篇
  2005年   47篇
  2004年   51篇
  2003年   43篇
  2002年   53篇
  2001年   48篇
  2000年   40篇
  1999年   28篇
  1998年   19篇
  1997年   23篇
  1996年   21篇
  1995年   21篇
  1994年   14篇
  1993年   7篇
  1992年   9篇
  1991年   4篇
  1990年   6篇
  1989年   8篇
  1988年   10篇
  1987年   6篇
  1986年   6篇
  1985年   5篇
  1984年   6篇
  1983年   1篇
  1981年   1篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
排序方式: 共有1396条查询结果,搜索用时 18 毫秒
201.

Weathering profiles developed on granitic rocks, exposed in the breakaways of the Barr‐Smith Range in the N of the Yilgarn Block of Western Australia, consist of kaolinitic saprolites merging upwards into silcrete, sandstone and grit. The sandstones and silcretes may also form columns or dykes, penetrating downwards into the saprolite. The silcretes are cemented by quartz and anatase, with zircon (QAZ‐cement), and‐the sandstones are cemented by aluminosilicates, either apparently amorphous (as siliceous allophane) or partly crystalline, as kaolinite and opaline silica. Transitional zones between silcretes and sandstones have all cement types. The profiles are characterized by low concentrations of alkalis and alkaline earths and most metals. The QAZ‐silcrete horizons may contain over 3% TiO2 and 1000 p.p.m. Zr. The profiles evolved through at least four stages: (i) Formation of the deep saprolite‐sand weathering profile by kaolinization of feldspar and mica at depth, and the solution of kaolinite near the top of the profile, causing settling of resistant quartz grains, (ii) Precipitation of QAZ‐cement, the TiO2 and SiO2 being derived partly by lateral migration from upslope. (iii) Precipitation of aluminosilicates, in the sandstone and the saprolite. (iv) Erosion and exposure of the profiles by pedimentation. A similar profile occurs further S, at Gabbin, but no QAZ‐silcrete is present and the only exposures are in exploration pits. The kaolinitic saprolite‐quartz sand profiles probably formed under humid conditions, as the equivalents of ferruginous laterite developed on more basic rocks nearby and of lateritic bauxite in the Darling Range. However,’ the sand was a surface horizon and there is no evidence that there was ever a ferruginous zone at these sites. The sequential precipitation of QAZ‐ and aluminosilicate‐cements was probably, a response to increasing aridity and reduced groundwater flow. Aluminosilicate‐cemented materials tend to disaggregrate on exposure but they are probably more abundant than the more prominent QAZ‐silcretes.  相似文献   
202.
表生地球化学酸碱性风化,对矿体氧化露头成矿元素的滞留或流失、分散或次生富集具有明显的控制作用。本文讨论在不同的酸碱性风化条件下,成矿元素按其本身的地球化学性状,另行组成适合表生环境的稳定化合物或矿物。进行元素再分配。利用成矿元素的地化性状,对元素表生地化行迹顺向追踪其次生富集,逆向追踪原生矿的矿物组合和元素组合,从中提炼找矿信息,指示找矿评价工作。  相似文献   
203.
庐枞盆地是以中、下侏罗统陆相碎屑岩建造为基底,经燕山运动而发育起来的陆相继承性火山岩盆地,是长江中下游地区重要的矿产地之一。盆地北部高岭土矿化普遍且强烈,具有很好的找矿远景。本文初步探讨了庐枞盆地高岭土成矿规律、矿床成因及找矿方向,提出了下一步开发利用的建议。  相似文献   
204.
针对火山岩风化壳地层型油气藏强非均质性,评价预测难度大,勘探成功率低等难题,本文采用重磁电剥层处理、沿层延拓信号增强反演方法有效顶测区域火山岩分布;建立风化淋滤剥蚀后不同岩石组合的不完整火山机构和形态识别模式,利用相干体和振幅分析等方法有效识别火山岩目标;在建立单次火山喷发岩石序列及储层分布模式基础上,开发了基于次生溶...  相似文献   
205.
Annual dissolved element fluxes of Himalayan rivers from Central Nepal are calculated using published river discharge and a new set chemical data of rivers, including monsoon sampling. These are used to study the control on chemical erosion of carbonate and silicate over the whole basin. Chemical erosion of carbonate is mainly controlled by the river runoff but it can be limited by the availability of carbonate in limestone-free basin. Chemical erosion of silicate is well correlated to the runoff. However differences between High Himalayan and Lesser Himalayan basins suggest that physical erosion may also play an important control on silicate weathering. To cite this article: C. France-Lanord et al., C. R. Geoscience 335 (2003).  相似文献   
206.
207.
We report erosion rates and processes, determined from in situ‐produced beryllium‐10 (10Be) and aluminum‐26 (26Al), across a soil‐mantled landscape of Arnhem Land, northern Australia. Soil production rates peak under a soil thickness of about 35 cm and we observe no soil thicknesses between exposed bedrock and this thickness. These results thus quantify a well‐defined ‘humped’ soil‐production function, in contrast to functions reported for other landscapes. We compare this function to a previously reported exponential decline of soil production rates with increasing soil thickness across the passive margin exposed in the Bega Valley, south‐eastern Australia, and found remarkable similarities in rates. The critical difference in this work was that the Arnhem Land landscapes were either bedrock or mantled with soils greater than about 35 cm deep, with peak soil production rates of about 20 m/Ma under 35–40 cm of soil, thus supporting previous theory and modeling results for a humped soil production function. We also show how coupling point‐specific with catchment‐averaged erosion rate measurements lead to a better understanding of landscape denudation. Specifically, we report a nested sampling scheme where we quantify average erosion rates from the first‐order, upland catchments to the main, sixth‐order channel of Tin Camp Creek. The low (~5 m/Ma) rates from the main channel sediments reflect contributions from the slowly eroding stony highlands, while the channels draining our study area reflect local soil production rates (~10 m/Ma off the rocky ridge; ~20 m/Ma from the soil mantled regions). Quantifying such rates and processes help determine spatial variations of soil thickness as well as helping to predict the sustainability of the Earth's soil resource under different erosional regimes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
208.
Previous studies have shown how biogenic silica particles undergo conversion to aluminosilicate phases in large tropical deltaic systems, thus affecting the world ocean budget of major seawater cations. This study tackles the important question of the silica budget in the coastal zone of the Mississippi River Delta, providing evidence for the role of biogenic silica diagenesis in this subtropical system from direct examination of individual diatom particles, sediment leachates and pore-water composition. The estimated reactive silica stored in the study area (5990 km2) is based on operational leaches that account for altered biogenic silica particles and other authigenic aluminosilicate phases in addition to fresh biogenic silica. Early diagenesis of silica in the delta front occurs mainly where more siliceous material is deposited. An inner-shelf area, where hypoxic conditions are found, significantly contributes to the formation of authigenic products of Si alteration. Data suggest that the limiting factor of silica alteration processes is the availability of detrital phases such as Al and Fe. The estimated total reactive silica accumulation in the study area is 1.45×1010 mol Si year−1, representing ∼2.2% of the long-term bulk sediment accumulation. On the basis of a conservative appraisal, the authigenic mineral components account for ∼40% of the long-term reactive silica storage. This study shows that non-tropical deltaic systems are significantly more important sinks of silica than previously thought and that, where conditions are favourable, a consistent portion of reactive silica not leaving the shelf is stored within the delta in the form of authigenic components.  相似文献   
209.
Tafoni are a type of cavernous weathering widespread around the world. Despite the extensive distribution of the tafoni, their genesis is not clear and is still a matter of debate, also because they occur in such different climatic conditions and on so many different types of substrate. Geomorphological characterization of more than 60 tafoni in three different Antarctic sites (two coastal and one inland) between 74 and 76° S with sampling of weathering products and salt occurrences are described together with thermal data (on different surfaces) and wind speed recorded in different periods of the year in a selected tafone close to the Italian Antarctic station. The aim of this present study is to provide further information to help understand the processes involved in the growth of tafoni in a cryotic environment, and the relationship of these processes to climate, with particular attention to the thermal regime and the role of wind. The new data presented in this paper suggest that there is no single key factor that drives the tafoni development, although thermal stress seems the most efficient process, particularly if we consider the short‐term fluctuations. The data also confirm that other thermal processes, such as freezing–thawing cycles and thermal shock, are not really effective for the development of tafoni in this area. The wind speed measured within the tafoni is half that recorded outside, thus favouring snow accumulation within the tafoni and therefore promoting salt crystallization. On the other hand, the wind effect on the thermal regime within the tafoni seems negligible. While both salt weathering and thermal stress appear active in this cryotic environment, these are azonal processes and are therefore active in other climatic areas where tafoni are widespread (such as the Mediterranean region). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
210.
Granular disintegration has long been recognized and referred to in weathering texts from all environments, including the Antarctic. Despite this universal identification and referral, few to no data exist regarding thermal conditions at this scale and causative mechanisms remain little more than conjecture. Here, as part of a larger weathering study, thermal data of individual grains (using infrared thermometry and ultra‐fine thermocouples) composing a coarse granite, as well as the thermal gradients in the outer 10 cm (using thermistors), were collected from a north‐facing exposure. Measurements were also made regarding the surface roughness of the rock. Based on recorded temperatures, the nature of the rock surface and the properties of the minerals, an argument is made for complex stress fields that lead to granular disintegration. Mineral to mineral temperature differences found to occur were, in part, due to the changing exposure to solar radiation through the day (and through seasons). Because the thermal conductivity and the coefficient of thermal expansion of quartz are not equal in all directions, coupled with the vagaries of heating, this leads to inter‐granular stresses. Although fracture toughness increases with a decrease in temperature, it is suggested that the tensile forces resulting from falling temperatures are able to exceed this and produce granular disassociation. The lack of equality with respect to crystal axis of both thermal conductivity and expansion in quartz further exacerbates the propensity to failure. Grain size and porosity also influence the thermal stresses and may help explain why some grains are held in place despite disassociation near the surface. While the data presented here appear to beg more questions than providing answers, they do provide a basis for better, more detailed studies of this important weathering scale. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号