首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2677篇
  免费   509篇
  国内免费   186篇
测绘学   65篇
大气科学   111篇
地球物理   1234篇
地质学   1085篇
海洋学   86篇
天文学   19篇
综合类   74篇
自然地理   698篇
  2024年   7篇
  2023年   13篇
  2022年   71篇
  2021年   130篇
  2020年   119篇
  2019年   114篇
  2018年   111篇
  2017年   156篇
  2016年   136篇
  2015年   140篇
  2014年   153篇
  2013年   265篇
  2012年   156篇
  2011年   170篇
  2010年   137篇
  2009年   129篇
  2008年   154篇
  2007年   176篇
  2006年   138篇
  2005年   110篇
  2004年   97篇
  2003年   95篇
  2002年   81篇
  2001年   73篇
  2000年   69篇
  1999年   67篇
  1998年   43篇
  1997年   56篇
  1996年   44篇
  1995年   23篇
  1994年   27篇
  1993年   16篇
  1992年   17篇
  1991年   14篇
  1990年   16篇
  1989年   14篇
  1988年   16篇
  1987年   4篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有3372条查询结果,搜索用时 172 毫秒
701.
Abstract

Abstract There is an urgent need for an integrated surface water and groundwater modelling tool that is suitable for southern African conditions and can be applied at various basin scales for broad strategic water resource planning purposes. The paper describes two new components (recharge and groundwater discharge) that have been added to an existing monthly time-step rainfall–runoff model that is widely used in the southern African subcontinent. The new components are relatively simple, consistent with the existing model formulation, but based on accepted groundwater flow principles and well understood groundwater parameters. The application of the revised model on two basins in southern Africa with quite different baseflow characteristics has demonstrated that the new components have a great deal of potential, even if the improvement is only to be able to simulate the groundwater baseflow component of total runoff more explicitly. More comprehensive testing and comparison of the results with existing groundwater and geohydrological data is required, while some extensions to the new components need to be considered to ensure that the model can be considered applicable to a wide range of basin and climate types.  相似文献   
702.
This study presents a Geographic Information System (GIS)‐based distributed rainfall‐runoff model for simulating surface flows in small to large watersheds during isolated storm events. The model takes into account the amount of interception storage to be filled using a modified Merriam ( 1960 ) approach before estimating infiltration by the Smith and Parlange ( 1978 ) method. The mechanics of overland and channel flow are modelled by the kinematic wave approximation of the Saint Venant equations which are then numerically solved by the weighted four‐point implicit finite difference method. In this modelling the watershed was discretized into overland planes and channels using the algorithms proposed by Garbrecht and Martz ( 1999 ). The model code was first validated by comparing the model output with an analytical solution for a hypothetical plane. Then the model was tested in a medium‐sized semi‐forested watershed of Pathri Rao located in the Shivalik ranges of the Garhwal Himalayas, India. Initially, a local sensitivity analysis was performed to identify the parameters to which the model outputs like runoff volume, peak flow and time to peak flow are sensitive. Before going for model validation, calibration was performed using the Ordered‐Physics‐based Parameter Adjustment (OPPA) method. The proposed Physically Based Distributed (PBD) model was then evaluated both at the watershed outlet as well as at the internal gauging station, making this study a first of its kind in Indian watersheds. The results of performance evaluation indicate that the model has simulated the runoff hydrographs reasonably well within the watershed as well as at the watershed outlet with the same set of calibrated parameters. The model also simulates, realistically, the temporal variation of the spatial distribution of runoff over the watershed and the same has been illustrated graphically. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
703.
In the last few years, the scientific community has developed several hydrological models aimed at the simulation of hydrological processes acting at the basin scale. In this context, the portion of peak runoff contributing areas represents a critical variable for a correct estimate of surface runoff. Such areas are strongly influenced by the saturated portion of a river basin (influenced by antecedent conditions) but may also evolve during a specific rainfall event. In the recent years, we have developed 2 theoretically derived probability distributions that attempt to interpret these 2 processes adopting daily runoff and flood‐peak time series. The probability density functions (PDFs) obtained by these 2 schematisations were compared for humid river basins in southern Italy. Results highlighted that the PDFs of the peak runoff contributing areas can be interpreted by a gamma distribution and that the PDF of the relative saturated area provides a good interpretation of such process that can be used for flood prediction.  相似文献   
704.
V. P. Singh 《水文研究》2005,19(4):969-992
Using kinematic wave equations analytical solutions are derived for flow resulting from a storm moving either up or down an infiltrating plane but not fully covering it. By comparing the flow resulting from this storm with that from a stationary storm of the same duration the influence of storm duration, direction and velocity is investigated. It is found that the direction of storm movement, duration and velocity of storms, as well as basin infiltration, have a pronounced effect on the discharge hydrograph. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
705.
In order to harvest runoff to palliate water disaster as well as effectively manage irrigation and fertilizer application in the studied region, it is necessary to better understand the runoff processes. A newly designed runoff collection system for a plot scale was used to partition runoff under contrasting rainfall events into surface flow and subsurface flow to obtain characteristics of surface runoff and throughflow in a purple soil (Regosols in FAO taxonomy, Entisol in USDA taxonomy) of Sichuan, China. Under small rainfall (shower and drizzle), only surface runoff was observed. It is noted that, under shower, particularly with antecedent dry soil conditions, the highest peak surface runoff significantly lagged behind that of rainfall, because air‐locked soil pores of the top layer appeared temporally. Under rainstorm and downpour, surface runoff and throughflow both commenced and showed hysteresis. The hydrograph of surface runoff better resembled that of rainfall than throughflow did. The durations of throughflow discharge of post‐rainfall‐end were near the same (within 24 h) under various rainfalls and rather dependent upon the soil properties than the rainfall characteristics. Throughflow is about 60–90% of total runoff, and especially significant in a ploughed layer under downpour. The chloride concentration of throughflow was over twice that of surface runoff and rainfall, implying that throughflow contains more nutrients than surface runoff. Presumably, surface runoff was primarily governed by an infiltration‐excess or saturated excess‐infiltration mechanism under unsaturated or saturated soil conditions. Therefore, the management of water and fertilizer, and the harvesting of water flow in the ploughed soil layer, should be emphasized in this region. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
706.
Development of Rhizocarpon growth curve from the Aoraki/Mount Cook area of New Zealand provides a means to assess Little Ice Age glacier behaviour and suggests approaches that have wider application. Employing a sampling strategy based on large populations affords the opportunity to assess which of various metrics (e.g. single largest, average of five largest, mean of an entire population) best characterise Rhizocarpon growth patterns. The 98% quantile from each population fitted with a quadric curve forms a reliable representation of the growth pattern. Since this metric does not depend on the original sample size, comparisons are valid where sample strategy must be adapted to local situations or where the original sample size differs. For the Aoraki/Mount Cook area a surface 100 years old will have a 98% quantile lichen diameter of 34.3 mm, whereas a 200‐year‐old surface will have a lichen diameter of 73.7 mm. In the Southern Alps, constraints from the age range of calibration points, the flattening of the quadric calibration curve and ecological factors limit the useful age range to approximately 250 years. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
707.
The warming of the Earth's atmosphere system is likely to change temperature and precipitation, which may affect the climate, hydrology and water resources at the river basins over the world. The importance of temperature change becomes even greater in snow or glacier dominated basins where it controls the snowmelt processes during the late‐winter, spring and summer months. In this study hydrologic responses of streamflow in the Pyanj and Vaksh River basins to climate change are analysed with a watershed hydrology model, based on the downscaled atmospheric data as input, in order to assess the regional climate change impact for the snowfed and glacierfed river basins in the Republic of Tajikistan. As a result of this analysis, it was found that the annual mean river discharge is increasing in the future at snow and glacier dominated areas due to the air temperature increase and the consequent increase in snow/ice melt rates until about 2060. Then the annual mean flow discharge starts to decrease from about 2080 onward because the small glaciers start to disappear in the glacier areas. It was also found that there is a gradual change in the hydrologic flow regime throughout a year, with the high flows occuring earlier in the hydrologic year, due to the warmer climate in the future. Furthermore, significant increases in annual maximum daily flows, including the 100‐year return period flows, at the Pyanj and Vaksh River basins toward the end of the 21st century can be inferred from flood frequency analysis results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
708.
709.
Stream and rainfall gauging and runoff sampling were used to determine changes in hydrology and export of nutrients and suspended sediment from a June 2004 wildfire that burned 3010 ha in chaparral coastal watersheds of the Santa Ynez Mountains, California. Precipitation during water year 2005 exceeded average precipitation by 200–260%. Burned watersheds had order of magnitude higher peak discharge compared with unburned watersheds but similar annual runoff. Suspended sediment export of 181 mt ha?1 from a burned watershed was approximately ten times greater than from unburned watersheds. Ammonium export from burned watersheds largely occurred during the first three storms and was 32 times greater than from unburned watersheds. Nitrate, dissolved organic nitrogen, and phosphate export from burned watersheds increased by 5.5, 2.8, and 2.2 times, respectively, compared with unburned chaparral watersheds. Storm runoff and peak discharge increase in burned compared with unburned sites were greatest during early season storms when enhanced runoff occurred. As the winter progressed, closely spaced storms and above average precipitation reduced the fire‐related impacts that resulted in significant increases in annual post‐fire runoff and export in other studies in southern California chaparral. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
710.
Australian arid zone ephemeral rivers are typically unregulated and maintain a high level of biodiversity and ecological health. Understanding the ecosystem functions of these rivers requires an understanding of their hydrology. These rivers are typified by highly variable hydrological regimes and a paucity, often a complete absence, of hydrological data to describe these flow regimes. A daily time‐step, grid‐based, conceptual rainfall–runoff model was developed for the previously uninstrumented Neales River in the arid zone of northern South Australia. Hourly, logged stage data provided a record of stream‐flow events in the river system. In conjunction with opportunistic gaugings of stream‐flow events, these data were used in the calibration of the model. The poorly constrained spatial variability of rainfall distribution and catchment characteristics (e.g. storage depths) limited the accuracy of the model in replicating the absolute magnitudes and volumes of stream‐flow events. In particular, small but ecologically important flow events were poorly modelled. Model performance was improved by the application of catchment‐wide processes replicating quick runoff from high intensity rainfall and improving the area inundated versus discharge relationship in the channel sections of the model. Representing areas of high and low soil moisture storage depths in the hillslope areas of the catchment also improved the model performance. The need for some explicit representation of the spatial variability of catchment characteristics (e.g. channel/floodplain, low storage hillslope and high storage hillslope) to effectively model the range of stream‐flow events makes the development of relatively complex rainfall–runoff models necessary for multisite ecological studies in large, ungauged arid zone catchments. Grid‐based conceptual models provide a good balance between providing the capacity to easily define land types with differing rainfall–runoff responses, flexibility in defining data output points and a parsimonious water‐balance–routing model. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号