首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   995篇
  免费   154篇
  国内免费   82篇
测绘学   37篇
大气科学   19篇
地球物理   216篇
地质学   580篇
海洋学   20篇
天文学   24篇
综合类   35篇
自然地理   300篇
  2023年   7篇
  2022年   38篇
  2021年   61篇
  2020年   49篇
  2019年   53篇
  2018年   44篇
  2017年   62篇
  2016年   52篇
  2015年   51篇
  2014年   56篇
  2013年   60篇
  2012年   68篇
  2011年   57篇
  2010年   51篇
  2009年   42篇
  2008年   51篇
  2007年   62篇
  2006年   43篇
  2005年   41篇
  2004年   36篇
  2003年   32篇
  2002年   18篇
  2001年   25篇
  2000年   30篇
  1999年   31篇
  1998年   15篇
  1997年   18篇
  1996年   16篇
  1995年   5篇
  1994年   9篇
  1993年   7篇
  1992年   7篇
  1991年   8篇
  1990年   7篇
  1989年   7篇
  1988年   8篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1977年   1篇
排序方式: 共有1231条查询结果,搜索用时 468 毫秒
991.
The ongoing glacier shrinking in the Himalayan region causes a significant threat to freshwater sustainability and associated future runoff. However, data on the spatial climatic contribution of glacier retreat is scanty in this region. To investigate the spatially distributed glacier surface energy and mass fluxes, a two-dimensional mass balance model was developed and applied to the selected glaciers of the Chandra basin, in the Upper Indus Basin, Western Himalaya. This model is driven by the remote sensing data and meteorological variables measured in the vicinity of the Chandra basin for six hydrological years (October 2013 to September 2019). The modelled variables were calibrated/validated with the in-situ observation from the Himansh station in the Chandra basin. We have derived air temperature (Ta ) spatially using the multivariate statistical approach, which indicates a relative error of 0.02–0.05°C with the observed data. Additionally, the relative error between the modelled and observed radiation fluxes was <10.0 W m−2. Our study revealed that the Chandra basin glaciers have been losing its mass with a mean annual mass balance of −0.59 ± 0.12 m w.e. a−1 for the six hydrological years. Results illustrated that the mean surface melt rate of the selected glaciers ranged from −5.1 to −2.5 m w.e. a−1 that lies between 4500 and 5000 m a.s.l. The study revealed that the net radiation (RN) contributes ~75% in total energy (FM ) during the melt season while sensible heat (HS) , latent heat (Hl) , and ground heat (HG) fluxes shared 15%, 8%, and 2%, respectively. Sensitivity analysis of the energy balance components suggested that the mass balance is highly sensitive to albedo and surface radiations in the study area. Overall, the proposed model performed well for glacier-wide energy and mass balance estimation and confirms the utility of remote sensing data, which may help in reducing data scarcity in the upper reaches of the Himalayan region.  相似文献   
992.
Plateau icefields are a common form of mountain ice mass, frequently found in mid‐latitude to high‐arctic regions and increasingly recognized in the Quaternary record. Their top‐heavy hypsometry makes them highly sensitive to changes in climate when the equilibriaum line altitude (ELA) lies above the plateau edge, allowing ice to expand significantly as regional ELAs decrease, and causing rapid recession as climate warms. With respect to future climate warming, it is important to understand the controls on plateau icefield response to climate change in order to better predict recession rates, with implications for water resources and sea‐level rise. Improving knowledge of the controls on glacier recession may also enable further palaeoclimatic information to be extracted from the Quaternary glacial record. We use the distribution of moraines to examine topographic controls on Younger Dryas icefield recession in Scotland. We find that overall valley morphology influences the style of recession, through microclimatic and geometric controls, with bed gradient affecting moraine spacing. Ice mass reconfiguration may occur as recession progresses because ice divide migration could alter the expected response based on hypsometric distribution. These results add to a growing body of research examining controls on glacier recession and offer a step towards unravelling non‐linear ice mass behaviour. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   
993.
Human‐accelerated climate change is quickly leading to glacier‐free mountains, with consequences for the ecology and hydrology of alpine river systems. Water origin (i.e., glacier, snowmelt, precipitation, and groundwater) is a key control on multiple facets of alpine stream ecosystems, because it drives the physico‐chemical template of the habitat in which ecological communities reside and interact and ecosystem processes occur. Accordingly, distinct alpine stream types and associated communities have been identified. However, unlike streams fed by glaciers (i.e., kryal), groundwater (i.e., krenal), and snowmelt/precipitation (i.e., rhithral), those fed by rock glaciers are still poorly documented. We characterized the physical and chemical features of these streams and investigated the influence of rock glaciers on the habitat template of alpine river networks. We analysed two subcatchments in a deglaciating area of the Central European Alps, where rock glacier‐fed, groundwater‐fed, and glacier‐fed streams are all present. We monitored the spatial, seasonal, and diel variability of physical conditions (i.e., water temperature, turbidity, channel stability, and discharge) and chemical variables (electrical conductivity, major ions, and trace element concentrations) during the snowmelt, glacier ablation, and flow recession periods of two consecutive years. We observed distinct physical and chemical conditions and seasonal responses for the different stream types. Rock glacial streams were characterized by very low and constant water temperatures, stable channels, clear waters, and high concentrations of ions and trace elements that increased as summer progressed. Furthermore, one rock glacier strongly influenced the habitat template of downstream waters due to high solute export, especially in late summer under increased permafrost thaw. Given their unique set of environmental conditions, we suggest that streams fed by thawing rock glaciers are distinct river habitats that differ from those normally classified for alpine streams. Rock glaciers may become increasingly important in shaping the hydroecology of alpine river systems under continued deglaciation.  相似文献   
994.
995.
Glaciers are significant freshwater storage systems in western China and contribute substantially to the summertime run‐off of many large rivers in the Tibetan Plateau. Under the scenario of climate change, discussions of glacier variability and melting contributions in alpine basins are important for understanding the run‐off composition and ensuring that water resources are adequately managed and protected in the downstream areas. Based on the multisource spatial data and long‐term ground observation of climatic and hydrologic data, using the remote sensing interpretation, degree‐day model, and ice volume method, we presented a comprehensive study of the glacier changes in number, area, and termini and their impacts on summertime run‐off and water resource in the Tuotuo River basin, located in the source region of the Yangtze River. The results indicated that climate change, especially rising temperature, accelerated the glacier melting and consequently led to hydrological change. From 1969 to 2009, the glacier retreat showed an absolutely dominant tendency with 13 reduced glaciers and lost glacier area of 45.05 km2, accompanied by limited growing glaciers in the study area. Meanwhile, it indicated that annual glacial run‐off was averagely 0.38 × 108 m3, accounting for 4.96% of the total summertime run‐off, followed by the supply from precipitation and snowmelt. The reliability of this magnitude was assessed by the classic volume method, which also showed that the water resources from glacier melting in the Tuotuo River basin increased by approximate 17.11 × 108 m3, accounting for about 3.77% of the total run‐off over the whole period of 1969–2009. Findings from this study will serve as a reference for future research about glacier hydrology in regions where observational data are deficient. Also, it can help the planning of future water management strategies in the source region of the Yangtze River.  相似文献   
996.
Low temperature in-stream solute acquisition in a glacial environment with very high suspended sediment is critical for downstream evolution of water chemistry. Present work is carried out on 18 km headwater reach from Gomukh (snout of the Gangotri glacier) to Gangotri along River Bhagirathi, India for understanding the hydrological processes controlling the solute acquisition in the glacial environment. This is the first attempt to conduct dissolution experiments with river bed sediments and meltwater considering different operating variables namely; contact time, seasonality, different sediment particle sizes, different sediment dose, effect of pH, wetting and crushing of bed sediments of the glacial stream. The role of sediment in low temperature solute acquisition process is characterized by sudden release of ions from the sediment in initial few seconds. Equilibrium time was observed to be 600 s (10 min). Further progressive increase in EC was observed from Gomukh to Gangotri, suggesting change in sediment surface characteristics/or source. Higher dissolution was observed from the bed sediments collected in June. It is found that the dissolution increases with increase in sediment doses but decreases with an increase in sediment particle size fraction. Higher solute acquisition was observed from crushed sediment because of an abundance of very fine particles having fresh, aggressive/reactive mineral surfaces which are capable of dissolution. The solute released from wetted sediment is significantly lower than the fresh sediment, which may be attributed to the destruction of microparticles adhering to mineral grains, the removal of fresh reactive surface sites, dissolution of rapidly weathered minerals such as calcite and evolution towards to equilibrium of the solution. Further, higher dissolution was observed with decrease in pH, which may be attributed to the availability of more hydrogen ion concentration of the solution, which favours more solute acquisition from sediment into meltwater.  相似文献   
997.
The processes by which climate change affects streamflow in alpine river basins are not entirely understood. This study evaluated the impacts of temperature and precipitation changes on runoff and streamflow using glacier‐enhanced Soil and Water Assessment Tool model. The study used observed and detrended historical meteorological data for recent decades (1961–2005) to analyse individual and combined effects of temperature and precipitation changes on snow and glacier melts and discharges in the Sary‐Djaz‐Kumaric River Basin (SRB), Tianshan Mountains. The results showed a 1.3% increase in annual snowmelt in the basin, mainly because of an increase in precipitation. Snowmelt in the basin varied seasonally, increasing from April through May because of increasing precipitation and decreasing from July through September because of rising temperature. Glacier melt increased by 5.4%, 5.0% of which was due to rising temperature and only 0.4% due to increasing precipitation. Annual streamflow increased by 4.4%, of which temperature and precipitation increases accounted for 2.5% and 1.9%, respectively. The impacts of temperature and precipitation changes on streamflow were especially significant after 1980 and even more so in September. Glacier melt, due to temperature rise, was the dominant driver of increasing streamflow in the glacier‐dominated SRB, Tianshan Mountains. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
998.
This paper is focused on the method for extracting glacier area based on ENVISAT ASAR Wide Swath Modes (WSM) data and digital elevation model (DEM) data, using support vector machines (SVM) classification method. The digitized result of the glacier coverage area in the western Qilian Mountains was extracted based on Enhanced LandSat Thematic Mapper (ETM+) imagery, which was used to validate the precision of glacier extraction result. Because of similar backscattering of glacier, shadow and water, precision of the glacier coverage area extracted from single-polarization WSM data using SVM was only 35.4%. Then, texture features were extracted by the grey level co-occurrence matrix (GLCM), with extracted glacier coverage area based on WSM data and texture feature information. Compared with the result extracted from WSM data, the precision improved 13.2%. However, the glacier was still seriously confused with shadow and water. Finally, DEM data was introduced to extract the glacier coverage area. Water and glacier can be differentiated because their distribution area has different elevations; shadow can be removed from the classification result based on simulated shadow imagery created by DEM data and SAR imaging parameters; finally, the glacier coverage area was extracted and the precision reached to 90.2%. Thus, it can be demonstrated that the glacier can be accurately semi-automatically extracted from SAR with this method. The method is suitable not only for ENVISAT ASAR WSM imagery, but also for other satellite SAR imagery, especially for SAR imagery covering mountainous areas.  相似文献   
999.
In this contribution a linear first‐order differential equation is used to model glacier length fluctuations. This equation has two parameters describing the physical characteristics of a glacier: the climate sensitivity, expressing how the equilibrium glacier length depends on the climatic state, and the response time, indicating how fast a glacier approaches a new equilibrium state after a stepwise change in the climatic forcing. A prerequisite for the application of a linear model to a particular glacier is that length fluctuations over the period of interest are significantly smaller than the average length. The linear model is used to define and illustrate some concepts relevant to the study of glacier fluctuations. It is shown that glaciers are never in equilibrium with climate, and that a constant time lag between forcing and response cannot be expected. Next the linear glacier model is applied to real glaciers, showing how information on response times and a reconstruction of the climatic forcing can be extracted from length records. In the first application, two adjacent glaciers in the Oetztal Alps (Austria) are considered: Hintereisferner and Kesselwandferner. By optimizing the response times with a control method, reconstructed equilibrium‐line histories for these glaciers are almost identical. The corresponding response times are 31 years for Hintereisferner, and only 2.1 years for Kesselwandferner. In the second application, four glacier length records from the Oberengadin (Switzerland) are used to reconstruct equilibrium‐line histories. These appear to be mutually consistent, and the mean rise of the equilibrium line over the period 1894–2007 appears to be 1.4 m yr?1. An equilibrium‐line history derived from data of a nearby climate station yields about the same trend over this period, but shows significant differences on the decadal time scale.  相似文献   
1000.
1959-2008年新疆阿尔泰山友谊峰地区冰川变化特征   总被引:2,自引:0,他引:2       下载免费PDF全文
 利用1959年地形图、2008年ASTER数字遥感影像及数字高程模型,在地理信息系统技术支持下分析了新疆阿尔泰山友谊峰地区冰川的变化特征。研究表明:1959-2008年该区冰川整体呈萎缩趋势,且变化幅度相对较大。相对于1959年,2008年冰川面积和数量分别变化-32.5%和-27.9%。其中,小于1 km2的冰川面积平均变化率为-66.7%,面积小于0.5 km2的冰川面积变化率大于-70%,面积大于1 km2以上的冰川面积变化率为-35.0%,1~5 km2的冰川面积变化率为-27.9%。冰川末端平均后退253 m,末端退缩比例为-18.3%,且南坡冰川末端变化率大于北坡。分析发现,研究区冰川面积亏损较大主要缘于该区小冰川分布数量较多(面积小于1 km2的冰川数量达75%),对气候变化的响应较为敏感。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号