全文获取类型
收费全文 | 4402篇 |
免费 | 1013篇 |
国内免费 | 839篇 |
专业分类
测绘学 | 627篇 |
大气科学 | 819篇 |
地球物理 | 673篇 |
地质学 | 1727篇 |
海洋学 | 734篇 |
天文学 | 69篇 |
综合类 | 313篇 |
自然地理 | 1292篇 |
出版年
2024年 | 92篇 |
2023年 | 95篇 |
2022年 | 169篇 |
2021年 | 227篇 |
2020年 | 223篇 |
2019年 | 245篇 |
2018年 | 189篇 |
2017年 | 248篇 |
2016年 | 275篇 |
2015年 | 310篇 |
2014年 | 286篇 |
2013年 | 361篇 |
2012年 | 286篇 |
2011年 | 221篇 |
2010年 | 195篇 |
2009年 | 267篇 |
2008年 | 233篇 |
2007年 | 244篇 |
2006年 | 239篇 |
2005年 | 250篇 |
2004年 | 212篇 |
2003年 | 184篇 |
2002年 | 169篇 |
2001年 | 163篇 |
2000年 | 135篇 |
1999年 | 114篇 |
1998年 | 99篇 |
1997年 | 89篇 |
1996年 | 78篇 |
1995年 | 58篇 |
1994年 | 57篇 |
1993年 | 47篇 |
1992年 | 51篇 |
1991年 | 26篇 |
1990年 | 40篇 |
1989年 | 22篇 |
1988年 | 19篇 |
1987年 | 14篇 |
1986年 | 6篇 |
1985年 | 1篇 |
1984年 | 5篇 |
1983年 | 2篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1977年 | 1篇 |
1976年 | 2篇 |
1971年 | 1篇 |
排序方式: 共有6254条查询结果,搜索用时 15 毫秒
21.
22.
北极海冰冰盖自20世纪以来经历了前所未有的缩减,这使得北极海冰异常对大气环流的反馈作用日益显现。尽管目前的气候模式模拟北极海冰均为减少的趋势,但各模式间仍然存在较大的分散性。为了评估模式对于北极海冰变化及其气候效应的模拟能力,我们将海冰线性趋势和年际异常两者结合起来构造了一种合理的衡量指标。我们还强调巴伦支与卡拉海的重要性,因为前人研究证明此区域海冰异常是近年来影响大尺度大气环流变异的关键因子。根据我们设定的标准,CMIP5模式对海冰的模拟可被归为三种类型。这三组多模式集合平均之间存在巨大的差异,验证了这种分组方法的合理性。此外,我们还进一步探讨了造成模式海冰模拟能力差别的潜在物理因子。结果表明模式所采用的臭氧资料集对海冰模拟能力有显著的影响。 相似文献
23.
The motion of a submarine in liquid under an ice plate covered with flooded snow is considered. The ice is modelled as an elastic plate and the snow cover is modelled as a viscous layer on the top of the plate. The submarine is modelled as a slender solid of revolution with scale 1:300. The experimental and theoretical study of the influence of the viscous snow layer on deflections of the floating ice plate is conducted. The viscous layer reduces the amplitudes of flexural-gravity waves. The greatest influence of the viscous layer on the plate deflections is achieved for velocities of the submarine, where the waves of maximum amplitude are generated. Theoretical results are in good qualitative and quantitative agreement with the model experiments. 相似文献
24.
导线覆冰大跨越输电塔-线体系动力特性分析 总被引:2,自引:0,他引:2
大跨越输电塔-线体系对导线覆冰等环境荷载反应敏感,容易发生动态倒塌破坏。目前对线路覆冰下输电塔的振动问题虽然取得了一定的研究成果,但是线路覆冰下输电塔的动力特性规律尚需进一步研究。本文以实际工程为例,建立了大跨越输电塔-线体系数值分析模型,分析了导线划分精度对输电塔-线体系动力特性的影响,并在此基础上分析了导线覆冰对输电塔-线体系动力特性的影响。研究结果表明:导线划分精度对输电塔振动影响较大;导线覆冰不仅影响输电塔振动频率,而且对输电塔振型也有较大影响,尤其是对输电塔横担的振动影响更大。 相似文献
25.
Many glaciers in alpine regions are currently rapidly receding and thinning at historically unobserved rates causing changes in the velocity field and in normal and shear stresses affecting the surface expression of structures within the ice. We studied the distribution of brittle and ductile structures at the surface of Pasterze Glacier during a 14-year period by analysing orthophotos and digital elevation models of five stages (1998, 2003, 2006, 2009 and 2012). A structural glaciological mapping key was applied. Normal faults, strike-slip faults, en échelon structures (systematic stepping of fractures), thrust faults, and band ogives were distinguished. Results indicate substantial deceleration and glacier thinning in 1998–2012. Glacier thinning was not homogenous over time related to the uneven distribution of supraglacial debris causing differential ablation or the selective ablation effects of subglacial water channels. Peculiar supraglacial features observed are circular collapse structures with concentric crevasses which form when the ice between the surface and the roof of water channels decreases. The total length of brittle structures increased from 38.4 km to 56.9 km whereas the extent of the glacier tongue decreased by 25%. The fracture density doubled from 0.009 to 0.018 m/m2. Areas of the glacier tongue which were up to 100 m away from the nearest brittle structure increased by 16%. The visual appearance of thrust faults shifted upglacier due to decreasing glacier velocity causing horizontal shortening or due to exhumation of faults that did not previously extend to the surface. A large number of brittle structures are progressively independent from glacier motion. Our study suggests that glacier tongues which are in a state of rapid decay and thinning are prone to fracturing due to normal fault formation and glacier disintegration. Water further increases ablation rates substantially if rather large amounts drain through supra-, en- or subglacial water channels. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd. 相似文献
26.
This paper presents a detailed account of the effect of shipping activity on the increasing trends of air temperatures in the Canadian Arctic region for the period of 1980–2018. Increasing trend of temperature has gained significant attention with respect to shipping activities and sea ice area in the Canadian Arctic. Temperature, sea ice area and shipping traffic datasets were investigated, and simple linear regression analyses were conducted to predict the rate of change(per decade) of the average temperature, considering winter(January) and summer(July) seasons. The results indicate that temperature generally increased over the studied region. Significant warming trend was observed during July, with an increase of up to 1℃, for the Canadian Arctic region. Such increasing trend of temperature was observed during July from the lower to higher latitudes. The increase in temperature during July is speculated to increase the melting of ice. Results also show a decline in sea ice area has a significant positive effect on the shipping traffic, and the numbers of marine vessel continue to increase in the region. The increase in temperature causes the breaking of sea ice due to shipping activities over northern Arctic Canada. 相似文献
27.
Georg Kaufmann 《Geophysical Journal International》1997,131(2):281-292
In this paper the effect of a delayed onset of glaciation in the Barents Sea on glacial isostatic adjustment is investigated. The model calculations solve the sea-level equation governing the total mass redistributions associated with the last glaciation cycle on a spherically symmetric, linear, Maxwell viscoelastic earth for two different scenarios for the growth phase of the Barents Sea ice sheet. In the first ice model a linear growing history is used for the Barents Sea ice sheet, which closely relates its development to the build-up of other major Late Pleistocene ice sheets. In the second ice model the accumulation of the Barents Sea ice sheet is restricted to the last 6 ka prior to the last glacial maximum.
The calculations predict relative sea levels, present-day radial velocities, and gravity anomalies for the area formerly covered by the Weichselian ice sheet. The results show that observed relative sea levels in the Barents Sea are appropriate for distinguishing between the different glaciation histories. In particular, present-day observables such as the free-air gravity anomaly over the Barents Sea, and the present-day radial velocities are sensitive to changes in the glaciation history on this scale.
A palaeobathymetry derived from relative sea-level predictions before the last glacial maximum based on the second ice model essentially agrees with a palaeobathymetry derived by Lambeck (1995). The additional emerged areas provide centres for the build-up of an ice sheet and thus support the theory of Hald, Danielsen & Lorentzen (1990) and Mangerud et al. (1992) that the Barents Sea was an essentially marine environment shortly before the last glacial maximum. 相似文献
The calculations predict relative sea levels, present-day radial velocities, and gravity anomalies for the area formerly covered by the Weichselian ice sheet. The results show that observed relative sea levels in the Barents Sea are appropriate for distinguishing between the different glaciation histories. In particular, present-day observables such as the free-air gravity anomaly over the Barents Sea, and the present-day radial velocities are sensitive to changes in the glaciation history on this scale.
A palaeobathymetry derived from relative sea-level predictions before the last glacial maximum based on the second ice model essentially agrees with a palaeobathymetry derived by Lambeck (1995). The additional emerged areas provide centres for the build-up of an ice sheet and thus support the theory of Hald, Danielsen & Lorentzen (1990) and Mangerud et al. (1992) that the Barents Sea was an essentially marine environment shortly before the last glacial maximum. 相似文献
28.
陕北榆林地区土地覆被变化分析 总被引:1,自引:0,他引:1
基于1981~2001 年NOVAA/AVHRR 和1998~2004 年SPOT VEGETATION 归一化植被 指数(NDVI) 数据, 对榆林地区植被动态变化进了定量研究, 并且利用多年气象数据分析了降水 和温度变化情况。结果表明: 榆林地区植被有了明显改善, 其改善状况集中于8、9、10 月份; 植被 覆被变化具有明显的区域差异, 北部植被覆盖改善的趋势明显, 且变化比较平稳; 南部增加趋势 不明显, 有的地方还呈下降趋势, 变化幅度大。 相似文献
29.
An understanding of temporal evolution of snow on sea ice at different spatial scales is essential for improvement of snow parameterization in sea ice models. One of the problems we face, however, is that long‐term climate data are routinely available for land and not for sea ice. In this paper, we examine the temporal evolution of snow over smooth land‐fast first‐year sea ice using observational and modelled data. Changes in probability density functions indicate that depositional and drifting events control the evolution of snow distribution. Geostatistical analysis suggests that snowdrifts increased over the study period, and the orientation was related to the meteorological conditions. At the microscale, the temporal evolution of the snowdrifts was a product of infilling in the valleys between drifts. Results using two shore‐based climate reporting stations (Paulatuk and Tuktoyuktuk, NWT) suggest that on‐ice air temperature and relative humidity can be estimated using air temperature recorded at either station. Wind speed, direction and precipitation on ice cannot be accurately estimated using meteorological data from either station. The temporal evolution of snow distribution over smooth land‐fast sea ice was modelled using SnowModel and four different forcing regimes. The results from these model runs indicate a lack of agreement between observed distribution and model outputs. The reasons for these results are lack of meteorological measurements prior to the end of January, lack of spatially adequate surface topography and discrepancies between meteorological variables on land and ice. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
30.
The spatial distribution of snow cover on the central Arctic sea ice is investigated here based on the observations made during the Third Chinese Arctic Expedition. Six types of snow were observed during the expedition: new/recent snow, melt-freeze crust, icy layer, depth hoar, coarse-grained, and chains of depth hoar. Across most measurement areas, the snow surface was covered by a melt-freeze crust 2-3 cm thick, which was produced by alternate strong solar radiation and the sharp temperature decrease over the summer Arctic Ocean. There was an intermittent layer of snow and ice at the base of the snow pack. The mean bulk density of the snow was 304.01±29.00 kg/m3 along the expedition line, and the surface values were generally smaller than those of the subsurface, confirming the principle of snow densification. In addition, the thicknesses and water equivalents of the new/recent and total-layer snow showed a decreasing trend with latitude, suggesting that the amount of snow cover and its spatial variations were mainly determined by precipitation. Snow temperature also presented significant variations in the vertical profile, and ablation and evaporation were not the primary factors in the snow assessment in late summer. The mean temperature of the surface snow was 2.01±0.96°C, which was much higher than that observed in theinterface of snow and sea ice. 相似文献