首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5516篇
  免费   820篇
  国内免费   895篇
测绘学   36篇
大气科学   376篇
地球物理   299篇
地质学   3396篇
海洋学   274篇
天文学   2307篇
综合类   225篇
自然地理   318篇
  2024年   27篇
  2023年   65篇
  2022年   131篇
  2021年   149篇
  2020年   140篇
  2019年   162篇
  2018年   135篇
  2017年   150篇
  2016年   156篇
  2015年   197篇
  2014年   235篇
  2013年   227篇
  2012年   261篇
  2011年   264篇
  2010年   229篇
  2009年   457篇
  2008年   358篇
  2007年   458篇
  2006年   429篇
  2005年   411篇
  2004年   386篇
  2003年   370篇
  2002年   313篇
  2001年   269篇
  2000年   234篇
  1999年   213篇
  1998年   208篇
  1997年   104篇
  1996年   63篇
  1995年   89篇
  1994年   65篇
  1993年   56篇
  1992年   66篇
  1991年   28篇
  1990年   29篇
  1989年   43篇
  1988年   20篇
  1987年   12篇
  1986年   10篇
  1985年   3篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1954年   1篇
排序方式: 共有7231条查询结果,搜索用时 15 毫秒
51.
用激光 -荧光显微镜等有机岩石学方法 ,挑选样品中有明显生、排烃现象的碳酸盐岩 ,再以测定的这类碳酸盐岩的有机碳含量为依据 ,确定本区高成熟碳酸盐气源岩残余有机碳的下限指标用 0 .13%~ 0 .14 %比较合理。根据碳酸盐岩储层孔隙中充填沥青和皮膜状残余沥青的分布和含量 ,论证了陕参 1井等奥陶系碳酸盐岩地层在地质历史中 ,存在若干油气有效储层。采用连续升温 ,步进取样的热模拟实验方法 ,揭示了本区煤与碳酸盐岩干酪根随热演化作用增强 ,烃类气体产物的干燥系数增大 ,δ1 3C1 、δ1 3C2 明显变重的规律 ,并根据样品实验结果推算 ,本区石炭系—二叠系煤最大生气阶段的δ1 3C1 应为 - 2 7‰~ - 2 8‰ ,碳酸盐岩最大生气阶段的δ1 3C1 应为- 31.7‰~ - 33‰。在气源成因判识中 ,根据主生气期阶段对天然气成藏储聚的贡献最大、甲烷碳同位素较重以及长庆气田风化壳气藏天然气δ1 3C1 重值区并不与石炭系—二叠系煤的镜质组反射率高值区匹配的现象等进行气源判识 ,认为长庆奥陶系风化壳气藏 ,具有下古生界海相碳酸盐岩气与上古生界石炭系—二叠系煤成气的混源成因  相似文献   
52.
江苏西南部晚侏罗世西横山组为一套粗碎屑岩—细碎屑岩及泥灰岩组成的陆相沉积岩,普遍含有火山物质。从地层分布、岩性特征、碎屑岩粒度统计分析表明,天生桥盆地和西横山盆地基本上是连续、贯通的,自东向西,由冲积扇相—河流相—湖泊相逐渐过渡,属于同一水中盆地中不同沉积相的产物。沉积物主要来自盆地东部,可能与“古茅山”隆起带有关。  相似文献   
53.
花江喀斯特峡谷地区石漠化成因初探   总被引:22,自引:1,他引:22  
花江喀斯特峡谷区地下水埋藏深,地表干旱,存在显著的人为加速土壤侵蚀过程,植被次生性明显,生境干热特征显著,是已石漠化和半石漠化的生态系统。其中地质构造、地貌演化、岩溶形态、可开发利用的水资源、植被群落可能是石漠化过程的主要自然成因,以土地利用为表现形式的强烈人类活动是石漠化的驱动力。基于此,提出了石漠化地区的土地利用方式和生态恢复过程的建议,旨在为石漠化的演化研究及生态重建提供参考。  相似文献   
54.
E. Honza  K. Fujioka 《Tectonophysics》2004,384(1-4):23-53
Results of the geological and geophysical surveys in the Daito ridges and basin in the northern West Philippine Basin suggest that the Daito Ridge was an arc facing toward the south from the Late Cretaceous to the Early Tertiary. The Late Cretaceous and Tertiary history of Southeast Asia is evaluated based on these data in the Daito ridges and basins and reconstructed based on overall plate kinematics that have operated in this area. During the Late Cretaceous, the Daito Ridge and the East Philippine Islands were positioned along the boundary between the Indian and Pacific Plates. The western half of the Philippines setting on the Indian Plate approached from the south and collided with the East Philippine–Daito Arc either during the latest Paleocene or the earliest Eocene. It is inferred that the bulk of the Philippine archipelago rotated clockwise and Borneo spun counterclockwise during the Tertiary.From the reconstruction, the formation of backarc basins and their spreading direction are assessed. As a result, some primary causes and significant characteristics are suggested for the opening of backarc basins in Southeast Asia. First, opening of some backarc basins commenced with or was triggered by collisions. Second, backarc basins opened approximately parallel to oceanic plate motion. Third, the formation of some backarc basins was triggered by the approach of a hot spreading center. Fourth, the spreading mode or direction of backarc basins was greatly affected by the configuration of the surrounding continent and was also rearranged to spread approximately parallel to oceanic plate motion.The formation of backarc basins and their spreading direction can be reasonably explained by plate kinematics. However, the generative force responsible for their formation is possibly within the subduction system, particularly to form horizontal tensional force in backarc side.  相似文献   
55.
This paper presents the tectonostratigraphic evolution of the Maimará Basin and explores the relationship between the clastic sediments and pyroclastic deposits in the basin and the evolution of the adjacent orogeny and magmatic arc. The sedimentary facies in this part of the basin include, in ascending order, an ephemeral fluvial system, a deep braided fluvial system and a medial to distal ephemeral fluvial system. We interpret that Maimará Formation accumulated in a basin that has developed two stages of accumulation. Stage 1 extended from 7 to 6.4 Ma and included accelerated tectonic uplift in the source areas, and it corresponds to the ephemeral fluvial system deposits. Stage 2, which extended from 6.4 to 4.8 Ma, corresponds to a tectonically quiescent period and included the development of the deep braided fluvial system deposits. The contact between the Maimará and Tilcara formations is always characterized by a regional unconformity and, in the study area, also shows pronounced erosion.Rare earth element and other chemical characteristics of the tuff intervals in the Maimará Formation fall into two distinct groups suggesting the tuffs were erupted from two distinct late Miocene source regions. The first and most abundant group has characteristics that best match tuffs erupted from the Guacha, Pacana and Pastos Grandes calderas, which are located 200 and 230 km west of the study area at 22º-23º30′S latitude. The members the second group are chemically most similar to the Merihuaca Ignimbrite from the Cerro Galán caldera 290 km south-southwest of the studied section. The distinctive geochemical characteristics are excellent tools to reconstruct the stratigraphic evolution of the Neogene Maimará basin from 6.4 to 4.8 Ma.  相似文献   
56.
We have mapped the high-mass star-forming region W49A at 450, 800, and 1100 microns with the JCMT. Spectral index measurements suggest an increase in temperature towards the emission peaks, consistent with previous data. We derive the gas masses associated with the central and extended emission from each of the three components, and find a deficit of gas around W49SW. The mass found for the core of W49N is in good agreement with the value previously derived from C34S (5-4) maps (Serabynet al., 1993), and similar morphologies are found in the line and continuum maps.  相似文献   
57.
The solar system, as we know it today, is about 4.5 billion years old. It is widely believed that it was essentially completed 100 million years after the formation of the Sun, which itself took less than 1 million years, although the exact chronology remains highly uncertain. For instance: which, of the giant planets or the terrestrial planets, formed first, and how? How did they acquire their mass? What was the early evolution of the “primitive solar nebula” (solar nebula for short)? What is its relation with the circumstellar disks that are ubiquitous around young low-mass stars today? Is it possible to define a “time zero” (t 0), the epoch of the formation of the solar system? Is the solar system exceptional or common? This astronomical chapter focuses on the early stages, which determine in large part the subsequent evolution of the proto-solar system. This evolution is logarithmic, being very fast initially, then gradually slowing down. The chapter is thus divided in three parts: (1) The first million years: the stellar era. The dominant phase is the formation of the Sun in a stellar cluster, via accretion of material from a circumstellar disk, itself fed by a progressively vanishing circumstellar envelope. (2) The first 10 million years: the disk era. The dominant phase is the evolution and progressive disappearance of circumstellar disks around evolved young stars; planets will start to form at this stage. Important constraints on the solar nebula and on planet formation are drawn from the most primitive objects in the solar system, i.e., meteorites. (3) The first 100 million years: the “telluric” era. This phase is dominated by terrestrial (rocky) planet formation and differentiation, and the appearance of oceans and atmospheres.  相似文献   
58.
本文在用Unno-Beckers方程计算光球和黑子本影磁场内FeIλ5324.19谱线形成过程中,计算了该谱线Stokes参数随5000连续谱光学深度分布的贡献函数及形成深度随波长的变化。计算结果表明:磁光效应的存在给该线横向磁场定标参数Q、U的形成深度的确定带来一定的复杂性,对I和V的形成深度的确定没有明显的影响。结合北京天文台太阳磁场望远镜半宽0.15的双折射滤光器,确定所观测磁场信息的形成深度。当对日面中心观测,在滤光器调至线心时,I形成在光球层及黑子高度100公里左右,在偏离线心0.15时V分量形成高度亦如此,Q、U分量的情况较复杂。  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号