首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3491篇
  免费   170篇
  国内免费   249篇
测绘学   409篇
大气科学   267篇
地球物理   801篇
地质学   1229篇
海洋学   180篇
天文学   43篇
综合类   137篇
自然地理   844篇
  2024年   23篇
  2023年   63篇
  2022年   141篇
  2021年   196篇
  2020年   280篇
  2019年   180篇
  2018年   191篇
  2017年   267篇
  2016年   184篇
  2015年   201篇
  2014年   343篇
  2013年   511篇
  2012年   286篇
  2011年   91篇
  2010年   54篇
  2009年   75篇
  2008年   78篇
  2007年   82篇
  2006年   95篇
  2005年   93篇
  2004年   72篇
  2003年   79篇
  2002年   54篇
  2001年   60篇
  2000年   40篇
  1999年   28篇
  1998年   18篇
  1997年   30篇
  1996年   19篇
  1995年   17篇
  1994年   11篇
  1993年   10篇
  1992年   8篇
  1991年   6篇
  1990年   4篇
  1989年   5篇
  1988年   8篇
  1986年   3篇
  1984年   4篇
排序方式: 共有3910条查询结果,搜索用时 46 毫秒
841.
Water repellency is a widespread property of Pinus pinaster and Eucalyptus globulus forest soils in NW Spain and is particularly severe during the summer dry conditions. The aim of this work was to compare actual water repellency at field‐moist samples with potential water repellency after drying at 25 and 105 °C in samples collected at different times of year under four forest soils. Also, we investigated whether drying at 25 or 105 °C led to repellency values comparable to the highest levels reached under field conditions in the summer with a view to developing an appropriate sampling protocol towards estimating the maximum possible water repellency of a given soil as a key to establishing its environmental effects. The actual and potential water repellency was determined by using the water drop penetration time (WDPT) and molarity of an ethanol drop (MED) tests. Clear seasonal patterns of water repellency were observed from the results for the four forest soils, peaking in the dry period and disappearing after prolonged wet periods. Water repellency lasts longer in sandy loam soils than in more finely textured soils, and also under eucalyptus than under pine forests. Drying soil samples at 25 or 105 °C increased water repellency, as measured with the WDPT method, in the four soils, but especially in the non‐repellent samples collected during the wet period. The increase was more marked in the sandy loam soils than in the more finely textured soils, and also after drying at 105 °C than at 25 °C. MED measurements exposed a common trait in the four soils; thus, the water repellency values obtained under field conditions in summer invariably exceeded those obtained after drying at 25 or 105 °C. In addition, the repellency values for dried samples collected in the wet period were never comparable to the maximum levels observed under field conditions in the summer. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
842.
Shen Huitao  Jiang Yue  You Wenhui 《水文研究》2012,26(11):1739-1747
Linking spatial variations of throughfall with shifting patterns during forest succession is important for understanding developmental patterns of ecosystem function. However, no such approach has been previously used for the chronosequence of evergreen broad‐leaved forests in subtropical regions. This study was conducted in a chronosequence of secondary forest succession in Tiantong National Forest Park, to determine the optimum number of collectors within certain limits of error. Throughfall was 66, 55 and 77% of gross precipitation in an early‐succession (SS), sub‐climax (SE) and climax (CE) forest, respectively. The coefficient of variations (CV) of throughfall reduced with increasing rainfall amounts. Monte Carlo resampling approach was used to find mean values and 90 and 95% confidence intervals of a variable number of collectors (n) ranging from 2 to 24. During the study period, with nine collectors at SS, five at SE and five at CE, the error in the mean individual throughfall did not exceed 10%, respectively. This error was reduced to 5% when using 16, 10 and 10 collectors at SS, SE and CE, respectively. The CVs decreased greatly with increasing sample size when the sample size was less than 16 for the three successional stages, regardless of rainfall amounts. Based on the Student's t‐value analysis of the mean individual throughfall volumes, a sample size of 16 at SS, five at SE and four at CE would be enough for throughfall estimates at an accepted error of 10% of 95% confidence level, respectively. Therefore, we concluded that the 25 of collectors used in the present study were sufficient to estimate the throughfall value at an accepted error of 10% at 90 and 95% confidence levels, even for those small rainfalls in eastern China. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
843.
Rainfall interception in forests is influenced by properties of the canopy that tend to vary over small distances. Our objectives were: (i) to determine the variables needed to model the interception loss of the canopy of a lower montane forest in south Ecuador, i.e. the storage capacity of the leaves S and of the trunks and branches St, and the fractions of direct throughfall p and stemflow pt; (ii) to assess the influence of canopy density and epiphyte coverage of trees on the interception of rainfall and subsequent evaporation losses. The study site was located on the eastern slope of the eastern cordillera in the south Ecuadorian Andes at 1900–2000 m above sea level. We monitored incident rainfall, throughfall, and stemflow between April 1998 and April 2001. In 2001, the leaf area index (LAI), inferred from light transmission, and epiphyte coverage was determined. The mean annual incident rainfall at three gauging stations ranged between 2319 and 2561 mm. The mean annual interception loss at five study transects in the forest varied between 591 and 1321 mm, i.e. between 25 and 52% of the incident rainfall. Mean S was estimated at 1·91 mm for relatively dry weeks with a regression model and at 2·46 mm for all weeks with the analytical Gash model; the respective estimates of mean St were 0·04 mm and 0·09 mm, of mean p were 0·42 and 0·63, and of mean pt were 0·003 and 0·012. The LAI ranged from 5·19 to 9·32. Epiphytes, mostly bryophytes, covered up to 80% of the trunk and branch surfaces. The fraction of direct throughfall p and the LAI correlated significantly with interception loss (Pearson's correlation coefficient r = −0·77 and 0·35 respectively, n = 40). Bryophyte and lichen coverage tended to decrease St and vascular epiphytes tended to increase it, although there was no significant correlation between epiphyte coverage and interception loss. Our results demonstrate that canopy density influences interception loss but only explains part of the total variation in interception loss. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
844.
845.
The last stage in the formation of the Arabian Nubian Shield in Jordan was dominated by post-orogenic igneous activity of the ∼610–542 Ma Araba Suite, including a monzogabbroic stock intruding the Saramuj Conglomerate, near the southeastern corner of the Dead Sea. The geological setting, petrography, geochemistry and geothermometry of the monzogabbro and other cogenetic varieties are used to shed light on the petrogenesis of this stock and reveal its magma source. The monzogabbro, megaporphyry dikes, and scattered syenite pockets are co-magmatic and alkaline, potassic and shoshonitic in nature. REE and trace elements patterns indicate that these magmas were produced from a mantle that had been modified by subduction-related metasomatism. The parental mafic magma could have been derived by 10% partial melting of LILE-enriched phlogopite-bearing spinel lherzolite, probably lithospheric mantle, in association with post-collisional extension. Fractional crystallization of this parental magma by olivine and pyroxene gave rise to the monzogabbroic magma.The megaporphyry dikes with their giant labradorite plagioclase megacrysts represent feeders of a voluminous volcanic activity that could have lasted for about 105 years.Thermodynamic modeling applying the MELTS software indicates crystallization of this suite in the temperature range of 1184–760 °C at a pressure of 2 kbars, agreeing with olivine-pyroxene, pyroxene, and two-feldspar thermometry. The modeled mineralogy and sequence of crystallization of constituent minerals using MELTS is in remarkable agreement with the observed modal mineralogy of the monzogabbro. Furthermore, a great degree of congruity exists between the modeled and observed chemistry of the major minerals with only minor discrepancies between modeled composition of biotite and olivine.  相似文献   
846.
Fluxes of latent heat, sensible heat, and water vapor, including turbulent deposition of fog droplets, were measured for two months in autumn 2005 within a subtropical montane cypress forest in Taiwan. The goal of the study was to determine whether significant evapotranspiration can occur during foggy conditions. Water vapor fluxes, QW, as determined with the Bowen Ratio method, were compared to those simultaneously measured with the eddy covariance method. The median Bowen Ratio was 1.06, and the median QW flux was 5 · 2 × 10?5 kg m?2 s?1. The vertical gradients of temperature and specific humidity over the forest, ΔT and Δq, peaked around noon during days without fog, and were reduced during foggy conditions. For 66% of the data points, ΔT and Δq were negative, corresponding to positive (upward) fluxes of sensible heat QH and latent heat QE. A Monte Carlo simulation proved that statistically significant evapotranspiration rates, i.e., upward water vapor fluxes, occurred during fog. At the same time, deposition fluxes of fog droplets occurred. Our results show that even during fog events, significant evapotranspiration may occur. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
847.
The decommissioning of roads is occurring in many forest environments with the aim of reducing the negative impacts of road runoff on water quality and aquatic habitat. Works associated with decommissioning are expensive so prior assessment of the outcomes of various options is merited. This paper presents a method of quantifying the degree to which a road is hydrologically connected to the stream network and thus the likely impacts of constructing a road of different configurations upon water quality. The method permits comparisons between different road network management options and is useful for assessing the likely result of decommissioning works. Emphasis is placed on quantifying the uncertainty of key performance measures. The procedures developed here are an extension of the probabilistic ‘volume to breakthrough’ model recently formulated by Australian water quality researchers and allow the quantification of road/stream connectivity without the need for extensive parameterization. To demonstrate its utility, the model was applied to an actual road decommissioning and replacement project in southeast Australia. Road areas and drainage outlets were surveyed in the field and flow paths to streams derived from a 1 metre resolution LiDAR based digital elevation model. The results demonstrate that the actual road decommissioning examined in this case was unlikely to reduce runoff to the stream network and that the overall impact of the works in conditions of design storms are likely to result in a net reduction in stream water quality. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
848.
Precipitation is the most fundamental input of water for terrestrial ecosystems. Most precipitation inputs are vertical, via rain, but can be horizontal, via wind‐driven rain and snow, or, in some ecosystems such as tropical montane cloud forests (TMCFs), via fog interception. Fog interception can be particularly important in ecosystems where fog is frequently present and there are seasonal periods of lower rainfall. Epiphytes in trees are a major ecological component of TMCFs and are particularly dependent on fog interception during periods of lower rainfall because they lack access to soil water. But assessing fog interception by epiphytes remains problematic because: (i) a variety of field or laboratory methods have been used, yet comparisons of interception by epiphytes versus interception by various types of fog gauge are lacking; (ii) previous studies have not accounted for potential interactions between meteorological factors. We compared fog interception by epiphytes with two kinds of commonly used fog gauges and developed relations between fog interception and meteorological variables by conducting laboratory experiments that manipulated key fog characteristics and from field measurements of fog interception by epiphytes. Fog interception measured on epiphytes was correlated with that measured from fog gauges but was more than an order of magnitude smaller than the actual measurements from fog gauges, highlighting a key measurement issue. Our laboratory measurements spanned a broad range of liquid water content (LWC) values for fog and indicate how fog interception is sensitive to an interaction between wind speed and LWC. Based on our results, considered in concert with those from other studies, we hypothesize that fog interception is constrained when LWC is low or high, and that fog interception increases with wind speed for intermediate values of LWC—a net result of deposition, impaction, and evaporation processes—until interception begins to decrease with further increases in wind speed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
849.
Following wildfires, the probability of flooding and debris flows increase, posing risks to human lives, downstream communities, infrastructure, and ecosystems. In southern California (USA), the Rowe, Countryman, and Storey (RCS) 1949 methodology is an empirical method that is used to rapidly estimate post-fire peak streamflow. We re-evaluated the accuracy of RCS for 33 watersheds under current conditions. Pre-fire peak streamflow prediction performance was low, where the average R2 was 0.29 and average RMSE was 1.10 cms/km2 for the 2- and 10-year recurrence interval events, respectively. Post-fire, RCS performance was also low, with an average R2 of 0.26 and RMSE of 15.77 cms/km2 for the 2- and 10-year events. We demonstrated that RCS overgeneralizes watershed processes and does not adequately represent the spatial and temporal variability in systems affected by wildfire and extreme weather events and often underpredicted peak streamflow without sediment bulking factors. A novel application of machine learning was used to identify critical watershed characteristics including local physiography, land cover, geology, slope, aspect, rainfall intensity, and soil burn severity, resulting in two random forest models with 45 and five parameters (RF-45 and RF-5, respectively) to predict post-fire peak streamflow. RF-45 and RF-5 performed better than the RCS method; however, they demonstrated the importance and reliance on data availability. The important parameters identified by the machine learning techniques were used to create a three-dimensional polynomial function to calculate post-fire peak streamflow in small catchments in southern California during the first year after fire (R2 = 0.82; RMSE = 6.59 cms/km2) which can be used as an interim tool by post-fire risk assessment teams. We conclude that a significant increase in data collection of high temporal and spatial resolution rainfall intensity, streamflow, and sediment loading in channels will help to guide future model development to quantify post-fire flood risk.  相似文献   
850.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号