首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1666篇
  免费   312篇
  国内免费   314篇
测绘学   51篇
大气科学   233篇
地球物理   474篇
地质学   981篇
海洋学   101篇
天文学   50篇
综合类   54篇
自然地理   348篇
  2024年   8篇
  2023年   16篇
  2022年   48篇
  2021年   93篇
  2020年   91篇
  2019年   104篇
  2018年   79篇
  2017年   89篇
  2016年   85篇
  2015年   80篇
  2014年   87篇
  2013年   132篇
  2012年   105篇
  2011年   92篇
  2010年   80篇
  2009年   101篇
  2008年   85篇
  2007年   97篇
  2006年   92篇
  2005年   85篇
  2004年   100篇
  2003年   60篇
  2002年   68篇
  2001年   62篇
  2000年   67篇
  1999年   52篇
  1998年   36篇
  1997年   44篇
  1996年   32篇
  1995年   29篇
  1994年   18篇
  1993年   13篇
  1992年   11篇
  1991年   12篇
  1990年   8篇
  1989年   6篇
  1988年   8篇
  1987年   6篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有2292条查询结果,搜索用时 312 毫秒
211.
Both of Typhoon Winnie (9711) and Matsa (0509) underwent an extratropical transition (ET) process when they moved northward after landfall and affected Liaodong Peninsula. However, Matsa produced half as much rainfall as Winnie, although it struck Liaodong Peninsula directly while Winnie passed through the Bohai Sea. The relations between the ET processes and the precipitation over Liaodong Peninsula are examined. The result shows that the precipitation difference between Winnie and Matsa was closely related to the interactions between the westerly systems and typhoons during their ET processes. Winnie was captured by the upper westerly trough and then coupled with it when moving to the mid-latitudes, and the positive anomaly of moist potential vorticity (MPV) was transported downward from the upper troposphere over the remnant circulation of the tropical cyclone (TC). It was favorable to the interaction between tropical warm and wet air and westerly cold air, causing convective cloud clusters to form and develop. The rain belt composed of several meso-β cloud clusters over the Liaodong Peninsula, resulting in heavy rainfall. On the other hand, Matsa did not couple with any upper trough during its ET process and the positive anomaly of MPV in the upper troposphere and its downward transfer were weak. Only one meso-β cloud cluster occurred in Matsa’s rain belt during its ET process that tended to lessen rainfall over Liaodong Peninsula.  相似文献   
212.
We correlate Upper Pleistocene glacial and fluvial deposits of the Cinca and Gállego River valleys (south central Pyrenees and Ebro basin, Spain) using geomorphic position, luminescence dates, and time-related trends in soil development. The ages obtained from glacial deposits indicate glacial periods at 85 ± 5 ka, 64 ± 11 ka, and 36 ± 3 ka (from glacial till) and 20 ± 3 ka (from loess). The fluvial drainage system, fed by glaciers in the headwaters, developed extensive terrace systems in the Cinca River valley at 178 ± 21 ka, 97 ± 16 ka, 61 ± 4 ka, 47 ± 4 ka, and 11 ± 1 ka, and in the Gállego River valley at 151 ± 11 ka, 68 ± 7 ka, and 45 ± 3 ka. The times of maximum geomorphic activity related to cold phases coincide with Late Pleistocene marine isotope stages and Heinrich events. The maximum extent of glaciers during the last glacial occurred at 64 ± 11 ka, and the terraces correlated with this glacial phase are the most extensive in both the Cinca (61 ± 4 ka) and Gállego (68 ± 7 ka) valleys, indicating a strong increase in fluvial discharge and availability of sediments related to the transition to deglaciation. The global Last Glacial Maximum is scarcely represented in the south central Pyrenees owing to dominantly dry conditions at that time. Precipitation must be controlled by the position of the Iberian Peninsula with respect to the North Atlantic atmospheric circulation system. The glacial systems and the associated fluvial dynamic seem sensitive to 1) global climate changes controlled by insolation, 2) North Atlantic thermohaline circulation influenced by freshwater pulses into the North Atlantic, and 3) anomalies in atmospheric circulation in the North Atlantic controlling precipitation on the Iberian Peninsula. Our scenario of glacial and fluvial evolution during the Late Pleistocene in northern Spain could be extrapolated to other glaciated mountainous areas in southern Europe.  相似文献   
213.
The available evidence regarding the disposition and chronology of Pliocene–Pleistocene fluvial terraces, coastal rock flats, raised beaches and lacustrine sediments adjoining the Anti-Atlas coastline of Morocco has been reviewed and supplemented by additional information from our own field reconnaissance. It is thus suggested that the study region has experienced uplift by  130 m since the Mid-Pliocene climatic optimum ( 3.1 Ma), by  90 m since the latest Pliocene ( 2 Ma), and by  45 m since the Mid-Pleistocene Revolution ( 0.9 Ma). Each of these phases of uplift correlates with a phase of global climate change known independently, and it is thus inferred that the observed uplift is being driven by climate through mechanisms such as erosional isostasy and the associated induced lower-crustal flow. Numerical modelling of the observed uplift history indicates that the mobile lower-crustal layer in the study region is  9 km thick, with a temperature at its base of  500 °C. The base of this mobile layer is inferred to be at  24 km depth, the deepest crust consisting of a layer of mafic underplating that does not flow under ambient conditions. The principal landform in the study region, the coastal rock platform at  60 m a.s.l., thus formed during a succession of interglacial marine highstands in the late Early Pleistocene when uplift rates were low. Although control on the ages of young sediments and landforms is currently extremely limited, being dependent on regional correlation schemes rather than on absolute dating, the study region fits the pattern, emerging worldwide, that climate change is driving the systematic growth of topographic relief evident during the Late Cenozoic.  相似文献   
214.
The recognition of terminal fluvial systems, otherwise termed 'terminal fans' or 'distributary fluvial fan systems', preserved in the ancient rock record is based primarily on the recognition of facies characteristics indicative of a progressive downstream decrease in: (i) fluvial discharge; (ii) channel depth and width; (iii) lateral and vertical connectivity of channel-fill elements; and (iv) evidence for channellized flow and a systematic increase in: (i) evidence for sheetflood deposition; (ii) aeolian and/or playa deposits; and (iii) channel bifurcation. However, despite these criteria having been applied previously to a variety of outcrop successions, there is still no unifying facies model that adequately accounts for the complex stratigraphic architectural relationships expected for such systems, based on the varied styles of fluvial activity and system interaction known from modern examples. Moreover, few previous studies have given significant consideration to the long-term temporal evolution of terminal fluvial fans. These issues are addressed by this study of the Permian (Leonardian/Artinskian) Organ Rock Formation of the Paradox Basin, South-east Utah. A detailed stratigraphic framework based on 84 sedimentary logs demonstrates proximal to distal variations in sedimentary style. Integration of these data with high-resolution architectural panels depicting the geometry and facies characteristics of individual fluvial elements has enabled the development of a series of depositional models that account for both the spatial and temporal evolution of the system and which are representative of: (i) initial progradation of the fluvial system into the Paradox foreland basin; (ii) retreat of the fluvial system and expansion of a distal aeolian dune system; (iii) the final phase of fluvial progradation following aeolian dune deflation; and (iv) the final retrogradation of the fluvial system back towards the hinterland.  相似文献   
215.
Four runs of experimental landform development, with the same uplift rate, different rainfall intensity, and the same material of different permeability adjusted by the degree of compaction, showed complicated effects of rainfall and mound-forming material. In the run with more rainfall on less permeable material, low separated ridges developed in the uplifted area, because abundant overland flow promoted valley erosion and slope processes from early stages. In the run with less rainfall on less permeable material, valley incision proceeded mostly in major valleys where surface water converges. Canyons developed during early stages and later a high massive mountain emerged. The effect of rainfall difference, however, appeared completely opposite on more permeable material accompanied by lower shear strength. In the run with more rainfall on more permeable material, a massive mountain similar to that with less rainfall on less permeable material appeared, and low separated ridges appeared in the run with less rainfall on more permeable material as in the run with more rainfall on less permeable material. In the former case, similar amount of water available for Hortonian overland flow in early stages estimated from rainfall rate and permeability can explain the development of similar landforms. In the latter case, while abundant surface water with more rainfall on less permeable material made fluvial erosion active from early stages, the deficiency in surface water with less rainfall on more permeable material apparently attenuated fluvial erosion but possibly accentuated slope processes and slope failures by seepage water flow through more permeable material of low shear strength. The active erosion from early stages apparently resulted in the development of enduring similar low landforms later in the dynamic equilibrium stage. These experimental results indicate that similar landforms can emerge from different environmental and lithologic controls, and that process does not necessarily follow from form.  相似文献   
216.
Large wood (LW) is an ecosystem engineer and keystone structure in river ecosystems, influencing a range of hydromorphological and ecological processes and contributing to habitat heterogeneity and ecosystem condition. LW is increasingly being used in catchment restoration, but restored LW jams have been observed to differ in physical structure to naturally occurring jams, with potential implications for restoration outcomes. This article examines the structural complexity and ecosystem engineering effects of LW jams at four sites with varying management intensity incorporating natural and restored wood. Our results reveal: (i) structural complexity and volume of jams was highest in the site with natural jams and low intensity riparian management, and lowest in the suburban site with simple restored jams; and (ii) that structural complexity influences the ecosystem engineering role of LW, with more complex jams generating the greatest effects on flow hydraulics (flow concentration, into bed flows) and sediment characteristics (D50, organic content, fine sediment retention) and the simplest flow deflector-style restored jams having the least pronounced effects. We present a conceptual model describing a continuum of increasing jam structural complexity and associated hydromorphological effects that can be used as a basis for positioning and evaluating other sites along the management intensity spectrum to help inform restoration design and best practice.  相似文献   
217.
The history of associating meteor showers with asteroidal-looking objects is long, dating to before the 1983 discovery that 3200 Phaethon moves among the Geminids. Only since the more recent recognition that 2003 EH1 moves among the Quadrantids are we certain that dormant comets are associated with meteoroid streams. Since that time, many orphan streams have found parent bodies among the newly discovered Near Earth Objects. The seven established associations pertain mostly to showers in eccentric or highly inclined orbits. At least 35 other objects are tentatively linked to streams in less inclined orbits that are more difficult to distinguish from those of asteroids. There is mounting evidence that the streams originated from discrete breakup events, rather than long episodes of gradual water vapor outgassing. If all these associations can be confirmed, they represent a significant fraction of all dormant comets that are in near-Earth orbits, suggesting that dormant comets break at least as frequently as the lifetime of the streams. I find that most pertain to NEOs that have not yet fully decoupled from Jupiter. The picture that is emerging is one of rapid disintegration of comets after being captured by Jupiter, and consequently, that objects such as 3200 Phaethon most likely originated from among the most primitive asteroids in the main belt, instead. They too decay mostly by disintegration into comet fragments and meteoroid streams. The disintegration of dormant comets is likely the main source of our meteor showers and the main supply of dust to the zodiacal cloud. Editorial handling: Frans Rietmeijer.  相似文献   
218.
三峡库首煤系高岭石研究   总被引:3,自引:0,他引:3  
研究了三峡库首宜昌地区煤系高岭岩的性质和高岭石在高温状态下的热物理性能及其在橡胶工业中的应用.通过化学成分分析证明了高岭岩中含有95%的高岭石,采用X射线衍射、透射电镜、差热分析方法对高岭石在不同温度(500~1 300°C)条件下煅烧过程中的变化进行了表征,在1 000°C以上的相变产物为莫来石和方英石,依据高岭石的高温煅烧机理,选择在900~980°C条件下直接煅烧高岭石,制备的超细高岭石微粉可用作氯化丁基橡胶的功能填料,能达到或超过美国同类产品的效果,同时也符合技术标准的要求.  相似文献   
219.
临清坳陷变换构造研究   总被引:8,自引:1,他引:7  
讨论了临清坳陷内3个规模较大的调节构造带,即封丘左行传递带、马陵横向背斜调节带和夏津—腰站斜向背斜调节带的构造特征及成因机制。临清坳陷内“东西分带、南北分块”的构造特征,是由平行于裂谷轴方向的NNE(NE)向伸展正断层和垂直(或斜交)于裂谷轴方向的NW(NWW)斜向滑移断层及横向构造带等共同作用造成的;区内3个规模较大的调节构造带是造成“南北分块”的构造原因,这些调节构造带垂直或斜交于裂谷方向.通过传递带或调节带的方式调节不同伸展域间的应变,从而使区域应变守恒。  相似文献   
220.
The basal succession of the Condamine Valley, which overlays the boundary between the Surat and Clarence-Moreton basins (eastern Australia), contains a clay-rich horizon ‘the Transition Zone’ that marks a pronounced unconformity between the Jurassic Walloon Coal Measures and the Quaternary Condamine Alluvium. This paper provides insights into the tectonic and drainage evolution of the Condamine Valley through integrated analysis of U–Pb ages of detrital zircon from three samples (494 concordant analyses), stable oxygen isotope analysis on eight authigenic clay samples, X-ray fluorescence of primary and trace elements, and hyperspectral mineral analysis from two drill cores (Lone Pine 17 and Daandine 164). The Transition Zone is interpreted to consist of both weathered Jurassic sediments and Cenozoic clay deposits. Two sequential cycles of erosion, deposition and pedogenesis, related to geomorphological and climatic conditions are recognised. Distinctive oxygen isotope signatures of the two weathering fronts demonstrated an initial Early Cretaceous phase (δ18O?=?11.9–15.7‰ VSMOW) associated with laterisation and possible uplift, followed by Paleogene (δ18O?=?16.4–17.3‰ VSMOW) silcretisation of reworked Jurassic sediments. Detrital zircon geochronology yielded Jurassic maximum constraints for the age of deposition of three samples that are indistinguishable within error, the oldest of which (163?±?8?Ma from the lateritic profile) corresponds to the age of the underlying Walloon Coal Measures. The two overlaying samples from a silcrete profile and granular alluvium yielded overlapping yet younger ages of 150?±?6?Ma and 156?±?9?Ma, respectively. Vitrinite reflectance used as a proxy for the thermal condition of the coal strata enabled an estimated 2–3?km of burial and subsequent (likely Early Cretaceous) uplift. Geochemical insights from the Condamine Valley correspond to broad-scale climatic and tectonic conditions, suggesting that ‘transition zone equivalents’ and corresponding groundwater dynamics may occur in similar sedimentary settings throughout eastern Australia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号