首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   619篇
  免费   81篇
  国内免费   389篇
地球物理   30篇
地质学   1017篇
海洋学   22篇
天文学   2篇
综合类   11篇
自然地理   7篇
  2024年   2篇
  2023年   13篇
  2022年   17篇
  2021年   18篇
  2020年   29篇
  2019年   39篇
  2018年   30篇
  2017年   54篇
  2016年   47篇
  2015年   53篇
  2014年   67篇
  2013年   46篇
  2012年   58篇
  2011年   37篇
  2010年   30篇
  2009年   46篇
  2008年   37篇
  2007年   64篇
  2006年   58篇
  2005年   42篇
  2004年   47篇
  2003年   36篇
  2002年   30篇
  2001年   35篇
  2000年   30篇
  1999年   13篇
  1998年   15篇
  1997年   9篇
  1996年   12篇
  1995年   14篇
  1994年   13篇
  1993年   8篇
  1992年   6篇
  1991年   15篇
  1990年   1篇
  1989年   5篇
  1988年   5篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
排序方式: 共有1089条查询结果,搜索用时 15 毫秒
161.
Garnet peridotites from the southern Su‐Lu ultra‐high‐pressure metamorphic (UHPM) terrane, eastern China, contain porphyroblastic garnet with aligned inclusions comprising a low‐P–T mineral assemblage (chlorite, hornblende, Na‐gedrite, Na‐phlogopite, talc, spinel and pyrite). Orthopyroxene porphyroblasts show fine exsolution lamellae of clinopyroxene and minor chromite. A clinopyroxene inclusion in garnet shows some orthopyroxene exsolution lamellae. Both the rims of porphyroblastic pyroxene and garnet and the matrix pyroxene and garnet crystallized at the expense of olivine. This is interpreted as a result of metasomatism of the peridotites by an SiO2‐rich melt at UHP conditions. A chromian garnet further overgrew on the rims of the garnet. The XMg values (Mg/(Mg+Fe)) of porphyroblastic garnet decrease from core to rim and vary in different peridotite samples, while the compositions of both the porphyroblastic and the matrix pyroxene are similar in terms of Ca–Mg–Fe. The Mg‐rich cores of porphyroblastic garnet and orthopyroxene record high temperatures and pressures (c. 1000 °C, ≥5.1 GPa), whereas the matrix minerals, including the rims of porphyroblasts, record much lower P–T (c. 4.2 GPa, c. 760 °C). Sm–Nd data give apparent isochron ages of c. 380 Ma and negative εNd(0) values (c.?9). These dates are considered meaningless due to isotopic disequilibrium between garnet cores and the rest of the rocks. The isotopic disequilibrium was probably caused by metasomatism of the peridotites by melt/fluids derived from the coevally subducted crustal materials. On the other hand, the Rb–Sr isotopic systems of phlogopite and clinopyroxene appear to have reached equilibrium and record a cooling age of c. 205 Ma. It is suggested that the garnet peridotites were originally emplaced into a low‐P–T environment prior to the c. 220 Ma continental collision, during which they were subducted together with crustal rocks to mantle depth and subjected to UHP metamorphism. An important corollary is that at least some of the coevally subducted crustal rocks in the Su‐Lu terrane have been subjected to peak metamorphism at P–T conditions much higher than presently estimated (≥2.7 GPa, ≤800 °C).  相似文献   
162.
Magnetic carriers in remagnetized Cretaceous granitic rocks of northeast Japan were studied using paleomagnetism, rock magnetism, optical microscopy and scanning electron microscopy (SEM) by comparison with unremagnetized granitic rocks. The natural remanent magnetization (NRM) of the remagnetized rocks is strong (0.3–1.7 A/m) and shows a northwesterly direction with moderate inclination (NW remanence), whereas the unremagnetized rocks preserve weak NRM (<0.5 A/m) with westerly and shallow direction (W remanence). Although thermal demagnetization shows that both NRMs are carried by magnetite, the remagnetized rocks reveal a higher coercivity with respect to alternating field demagnetization (20 mT相似文献   
163.
The exceptional development of coeval hydrocarbon and aqueous fluid inclusions (FI) in fluorite from the MVT-type ore deposit of Koh-i-Maran, Baluchistan (North Kirthar range, Pakistan), provides samples which are representative of the ore-forming fluid and which support the hypothesis of petroleum migration in the province. Primary brines at 125°C (10 wt% equ. NaCl) and secondary CH4-rich brines at 135°C (7 wt% equ. NaCl), are recognised to be associated with oil migration in the fluid inclusions. They support the model of a per ascensum MVT (Mississippi Valley Type) stratabound hydrothermal deposit. A pressure–temperature path of 120–125°C to 165–200 bars is calculated from microthermometric data and PVT modelling of hydrocarbon FI using the modified Peng–Robinson Equation of State (IFP software) from primary cogenetic inclusions (oil and brines).The composition of gas and oil fractions is obtained by a combination of Synchrotron FTIR microanalysis and gas chromatography performed on individual fluid inclusions. The oil entrapped as a coeval primary fluid phase is a light aliphatic normal oil in the range C8–C35 with a high CO2 content. The brown solid phase found systematically in the oil is probably asphaltene resulting from precipitation after trapping of the heavy fraction, which commonly occurs by decreasing pressure and temperature and\or by CO2 injection. Later CH4-rich brine influx probably modified part of the oil in the primary fluid inclusions because degraded oil is observed within such inclusions. Biomarkers obtained by GC-MS analysis indicate a terpane distribution quite similar to the nearest oil seepage in the Gokurt area. This result and the high CO2 content of organic fluid inclusions indicate a restricted/confined sedimentary environment for the source rock, which could correspond to the Eocene Carbonate formation with type-II organic matter. A possible additional input of gas from the Sambar formation is suggested as feasible. The link between the fluid inclusion data and the geodynamic evolution lead us to propose a circulation of basinal fluids driven mainly by the fault system during dewatering in the foredeep. In Pakistan, they are coeval to major compressional NW–SE Oligocene episode in the thrust belt. The origin of the fluorine may be found in the basin sediments as well as near the basement. The brines originated in salt structures recognized in eocambrian at the decollement level, the source rock was already mature.  相似文献   
164.
The characterisation of quartz using trace element geochemistry and electron paramagnetic resonance measurements has been tested for different generations of quartz veining in the multi-stage hydrothermal vein system at Cowarra. Quartz closely associated with gold mineralisation can be distinguished from earlier and later quartz generations in the mineralised environment, and both types can be distinguished from regional, barren quartz veins. These separate stages of quartz veins are also recognised from their fluid inclusion characteristics. Geochemical differences in the quartz partly reflect the presence of minor mineral inclusions, particularly sulfides and arsenopyrite.The study highlights the importance of understanding the paragenetic sequence of quartz vein development in a mineralised environment and the need for careful, thorough sampling before attempting geochemical and EPR characterisation of quartz as an exploration technique.  相似文献   
165.
Coexisting melt (MI), fluid-melt (FMI) and fluid (FI) inclusions in quartz from the Oktaybrskaya pegmatite, central Transbaikalia, have been studied and the thermodynamic modeling of PVTX-properties of aqueous orthoboric-acid fluids has been carried out to define the conditions of pocket formation. At room temperature, FMI in early pocket quartz and in quartz from the coarse-grained quartz–oligoclase host pegmatite contain crystalline aggregates and an orthoboric-acid fluid. The portion of FMI in inclusion assemblages decreases and the volume of fluid in inclusions increases from the early to the late growth zones in the pocket quartz. No FMI have been found in the late growth zones. Significant variations of solid/fluid ratios in the neighboring FMI result from heterogeneous entrapment of coexisting melts and fluids by a host mineral. Raman spectroscopy, SEM EDS and EMPA indicate that the crystalline aggregates in FMI are dominated by mica minerals of the boron-rich muscovite–nanpingite CsAl2[AlSi3O10](OH,F)2 series as well as lepidolite. Topaz, quartz, potassium feldspar and several unidentified minerals occur in much lower amounts. Fluid isolations in FMI and FI have similar total salinity (4–8 wt.% NaCl eq.) and H3BO3 contents (12–16 wt.%). The melt inclusions in host-pegmatite quartz homogenize at 570–600 °C. The silicate crystalline aggregates in large inclusions in pocket quartz completely melt at 615 °C. However, even after those inclusions were significantly overheated at 650±10 °C and 2.5 kbar during 24 h they remained non-homogeneous and displayed two types: (i) glass+unmelted crystals and (ii) fluid+glass. The FMI glasses contain 1.94–2.73 wt.% F, 2.51 wt.% B2O3, 3.64–5.20 wt.% Cs2O, 0.54 wt.% Li2O, 0.57 wt.% Ta2O5, 0.10 wt.% Nb2O5, 0.12 wt.% BeO. The H2O content of the glass could exceed 12 wt.%. Such compositions suggest that the residual melts of the latest magmatic stage were strongly enriched in H2O, B, F, Cs and contained elevated concentrations of Li, Be, Ta, and Nb. FMI microthermometry showed that those melts could have crystallized at 615–550 °C.

Crystallization of quartz–feldspar pegmatite matrix leads to the formation of H2O-, B- and F-enriched residual melts and associated fluids (prototypes of pockets). Fluids of different compositions and residual melts of different liquidus–solidus PT-conditions would form pockets with various internal fluid pressures. During crystallization, those melts release more aqueous fluids resulting in a further increase of the fluid pressure in pockets. A significant overpressure and a possible pressure gradient between the neighboring pockets would induce fracturing of pockets and “fluid explosions”. The fracturing commonly results in the crushing of pocket walls, formation of new fractures connecting adjacent pockets, heterogenization and mixing of pocket fluids. Such newly formed fluids would interact with a primary pegmatite matrix along the fractures and cause autometasomatic alteration, recrystallization, leaching and formation of “primary–secondary” pockets.  相似文献   

166.
The Dongmozhazhua deposit, the largest Pb–Zn deposit in south Qinghai, China, is stratabound, carbonate‐hosted and associated with epigenetic dolomitization and silicification of Lower–Middle Permian—Upper Triassic limestones in the hanging walls of a Cenozoic thrust fault system. The mineralization is localized in a Cenozoic thrust‐folded belt along the northeastern edge of the Tibetan plateau, which was formed due to the India–Asia plate collision during the early Tertiary. The deposit comprises 16 orebodies with variable thicknesses (1.5–26.3 m) and lengths (160–1820 m). The ores occur as dissemination, vein, and breccia cement. The main sulfide assemblage is sphalerite + galena + pyrite + marcasite ± chalcopyrite ± tetrahedrite, and gangue minerals consist mainly of calcite, dolomite, barite, and quartz. Samples of pre‐ to post‐ore stages calcite yielded δ13C and δ18O values that are, respectively, similar to and lower than those yielded by the host limestones, suggesting that the calcite formed from fluids derived from carbonate dissolution. Fluid inclusions in calcite and sphalerite in the polymetallic sulfidization stage mostly comprise liquid and gas phases at room temperature, with moderate homogenization temperatures (100–140°C) and high salinities (21–28 wt% NaCl eq.). Micro‐thermometric fluid inclusion data point to polysaline brines as ore‐forming fluids. The δD and δ18O values of ore fluids, cation compositions of fluid inclusions, and geological information suggest two main possible fluid sources, namely basinal brines and evaporated seawater. The fluid inclusion data and regional geology suggest that basinal brines derived from Tertiary basins located southeast of the Dongmozhazhua deposit migrated along deep detachment zones of the regional thrust system, leached substantial base metals from country rocks, and finally ascended along thrust faults at Dongmozhazhua. There, the base‐metal‐rich basinal brines mixed with bacterially‐reduced H2S‐bearing fluids derived from evaporated seawater preserved in the Permo–Triassic carbonate strata. The mixing of the two fluids resulted in Pb–Zn mineralization. The Dongmozhazhua Pb–Zn deposit has many characteristics that are similar to MVT Pb–Zn deposits worldwide.  相似文献   
167.
1.Introduction TheQinlingDabieorogenicbeltwasformedbycollisionbetweentheNorthChinaandYangtzeblocks.Thecorepartoftheorogenicbeltconsistsofseveralmetamorphicrockgroups,includingtheDabie(Tongbai)complex,Hong’an(Susong)group,SujiahegroupandSuixian(Yao…  相似文献   
168.
Idiomorphic quartz crystals in topaz-bearing granite from the Salmi batholith contain primary inclusions of silicate melt and abundant mostly secondary aqueous fluid inclusions. Microthermometric measurements on melt inclusions give estimates for the granite solidus and liquidus of 640–680°C and 770–830°C, respectively. Using published solubility models for H2O in granitic melts and the obtained solidus/liquidus temperatures from melt inclusions, the initial water concentration of the magma is deduced to have been approximately 3 wt.% and the minimum pressure about 2 kbar. At this initial stage, volatile-undersaturation conditions of magma were assumed. These results indicate that the idiomorphic quartz crystals are magmatic in origin and thus real phenocrysts. During subsolidus cooling and fracturing of the granite, several generations of aqueous fluid inclusions were trapped into the quartz phenocrysts. The H2O inclusions have salinities and densities of 1–41 wt.% NaCl eq. and 0.53–1.18 g/cm3, respectively.  相似文献   
169.
中生界侏罗系是鄂尔多斯盆地重要的石油勘探与开发目的层之一,侏罗系油藏受前侏罗纪古地貌影响较为显著。本文通过流体包裹体特征分析、均一化温度测定和包裹体丰度(GOI)分析、定量颗粒荧光(QGF、QGF-E)研究以及储集层自生伊利石K-Ar定年等实验方法和手段的应用,对鄂尔多斯盆地侏罗系油气包裹体特征进行了精细描述及定量化分析研究,揭示了侏罗系油藏形成时间、充注过程及油气包裹体与油气运移、成藏的关系。研究结果表明:侏罗系油藏存在晚期充注,早期充注少或油藏遭受调整,早期生成的烃类现今仅以沥青的形式赋存,现今烃类流体主要为晚期成藏的产物。侏罗系石油大规模充注期为(108.3±2.0)~(116.5±2.0)Ma(早白垩世中期),具有垂向运移聚集的特点。鄂尔多斯盆地侏罗系油藏早期受岩性和构造双重控制,晚期构造活动调整了油气藏的形态及局部富集。侏罗系在晚期成藏过程中没有形成过叠合连片的大规模的油藏,只在局部构造上形成规模较小的“小而肥”的独立油藏。  相似文献   
170.
Liqiang Yang    Jun Deng    Chunying Guo    Jing Zhang    Shaoqing Jiang    Bangfei Gao    Qingjie Gong    Qingfei Wang 《Resource Geology》2009,59(2):181-193
The Dayingezhuang gold deposit is located in the central part of the Zhaoping Fault Zone, which is one of the most important gold-hosting faults in the Jiaodong gold province of China. Dayingezhuang is a typical large-scale shear zone-hosted disseminated gold deposit with superimposed silver mineralization. Fluid inclusion (FI) petrography and microthermometry, and analysis of oxygen and hydrogen isotopes for fluid inclusions were conducted to determine the characteristics of the ore-forming fluids and the processes of silver mineralization. Microthermometry data of FI indicated that ore-forming fluids are characterized by low salinity and low density. Homogenization pressures of FI are estimated at 20 × 105–220 × 105 Pa. The change in ore-forming fluids from K2SO4 type to NaCl type indicates the superposition of two hydrothermal mineralizing events. Ore-forming fluids were dominated by magmatic components in the early mineralization period, and affected by meteoric waters in the late period. Gold may have been transported as Au-S or Au-Cl complexes, whereas silver was transported as Ag-Cl complexes. Early fluid boiling and later fluid mixing are thought to be two of the main factors causing the deposition and superimposing of gold and silver to form the large deposit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号