首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   619篇
  免费   81篇
  国内免费   389篇
地球物理   30篇
地质学   1017篇
海洋学   22篇
天文学   2篇
综合类   11篇
自然地理   7篇
  2024年   2篇
  2023年   13篇
  2022年   17篇
  2021年   18篇
  2020年   29篇
  2019年   39篇
  2018年   30篇
  2017年   54篇
  2016年   47篇
  2015年   53篇
  2014年   67篇
  2013年   46篇
  2012年   58篇
  2011年   37篇
  2010年   30篇
  2009年   46篇
  2008年   37篇
  2007年   64篇
  2006年   58篇
  2005年   42篇
  2004年   47篇
  2003年   36篇
  2002年   30篇
  2001年   35篇
  2000年   30篇
  1999年   13篇
  1998年   15篇
  1997年   9篇
  1996年   12篇
  1995年   14篇
  1994年   13篇
  1993年   8篇
  1992年   6篇
  1991年   15篇
  1990年   1篇
  1989年   5篇
  1988年   5篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
排序方式: 共有1089条查询结果,搜索用时 265 毫秒
11.
The Zambian Copperbelt forms the southeastern part of the 900-km-long Neoproterozoic Lufilian Arc and contains one of the world’s largest accumulations of sediment-hosted stratiform copper mineralization. The Nchanga deposit is one of the most significant ore systems in the Zambian Copperbelt and contains two major economic concentrations of copper and cobalt, hosted within the Lower Roan Group of the Katangan Supergroup. A Lower Orebody (copper only) and Upper Orebody (copper and cobalt) occur towards the top of arkosic units and within the base of overlying shales. The sulfide mineralogy includes pyrite, bornite, chalcopyrite, and chalcocite, although in the Lower Orebody, sulfide phases are partially or completely replaced by malachite and copper oxides. Carrollite is the major cobalt-bearing phase and is restricted to fault-propagation fold zones within a feldspathic arenite. Hydrothermal alteration minerals include dolomite, phlogophite, sericite, rutile, quartz, tourmaline, and chlorite. Quartz veins from the mine sequence show halite-saturated fluid inclusions, ranging from ~31 to 38 wt% equivalent NaCl, with homogenisation temperatures (ThTOT) ranging between 140 and 180°C. Diagenetic pyrites in the lower orebody show distinct, relatively low δ 34S, ranging from −1 to −17‰ whereas arenite- and shale-hosted copper and cobalt sulfides reveal distinctly different δ 34S from −1 to +12‰ for the Lower Orebody and +5 to +18‰ for the Upper Orebody. There is also a clear distinction between the δ 34S mean of +12.1±3.3‰ (n=65) for the Upper Orebody compared with +5.2±3.6‰ (n=23) for the Lower Orebody. The δ 13C of dolomites from units above the Upper Orebody give δ 13C values of +1.4 to +2.5‰ consistent with marine carbon. However, dolomite from the shear-zones and the alteration assemblages within the Upper Orebody show more negative δ 13C values: −2.9 to −4.0‰ and −5.6 to −8.3‰, respectively. Similarly, shear zone and Upper Orebody dolomites give a δ 18O of +11.7 to +16.9‰ compared to Lower Roan Dolomites, which show δ 18O of +22.4 to +23.0‰. Two distinct structural regimes are recognized in the Nchanga area: a weakly deformed zone consisting of basement and overlying footwall siliciclastics, and a moderate to tightly folded zone of meta-sediments of the Katangan succession. The fold geometry of the Lower Roan package is controlled by internal thrust fault-propagation folds, which detach at the top of the lowermost arkose or within the base of the overlying stratigraphy and show vergence towards the NE. Faulting and folding are considered to be synchronous, as folding predominantly occurred at the tips of propagating thrust faults, with local thrust breakthrough. The data from Nchanga suggests a strong link between ore formation and the development of structures during basin inversion as part of the Lufilian Orogeny. Sulfides tend to be concentrated within arenites or coarser-grained layers within shale units, suggesting that host-rock porosity and possibly permeability played a role in ore formation. However, sulfides are also commonly orientated along, but not deformed by, a tectonic fabric or hosted within small fractures that suggest a significant role for deformation in the development of the mineralization. The ore mineralogy, hydrothermal alteration, and stable isotope data lend support to models consistent with the thermochemical reduction of a sulfate- (and metal) enriched hydrothermal fluid, at the site of mineralization. There is no evidence at Nchanga for a contribution of bacteriogenic sulfide, produced during sedimentation or early diagenesis, to the ores.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.Editorial handling: H. Frimmel  相似文献   
12.
CO2 inclusions with density up to 1,197 kg m−3 occur in quartz–stibnite veins hosted in the low-grade Palaeozoic basement of the Gemericum tectonic unit in the Western Carpathians. Raman microanalysis corroborated CO2 as dominant gas species accompanied by small amounts of nitrogen (<7.3 mol%) and methane (<2.5 mol%). The superdense CO2 phase exsolved from an aqueous bulk fluid at temperatures of 183–237°C and pressures between 1.6 and 3.5 kbar, possibly up to 4.5 kbar. Low thermal gradients (∼12–13°C km−1) and the CO2–CH4–N2 fluid composition rule out a genetic link with the subjacent Permian granites and indicate an external, either metamorphogenic (oxidation of siderite, dedolomitization) or lower crustal/mantle, source of the ore-forming fluids.According to microprobe U–Pb–Th dating of monazite, the stibnite-bearing veins formed during early Cretaceous thrusting of the Gemeric basement over the adjacent Veporic unit. The 15- to 18-km depth of burial estimated from the fluid inclusion trapping PT parameters indicates a 8- to 11-km-thick Upper Palaeozoic–Jurassic accretionary complex overlying the Gemeric basement and its Permo-Triassic autochthonous cover.  相似文献   
13.
Large pyroclastic rhyolites are snapshots of evolving magma bodies, and preserved in their eruptive pyroclasts is a record of evolution up to the time of eruption. Here we focus on the conditions and processes in the Oruanui magma that erupted at 26.5 ka from Taupo Volcano, New Zealand. The 530 km3 (void-free) of material erupted in the Oruanui event is comparable in size to the Bishop Tuff in California, but differs in that rhyolitic pumice and glass compositions, although variable, did not change systematically with eruption order. We measured the concentrations of H2O, CO2 and major and trace elements in zoned phenocrysts and melt inclusions from individual pumice clasts covering the range from early to late erupted units. We also used cathodoluminescence imaging to infer growth histories of quartz phenocrysts. For quartz-hosted inclusions, we studied both fully enclosed melt inclusions and reentrants (connecting to host melt through a small opening). The textures and compositions of inclusions and phenocrysts reflect complex pre-eruptive processes of incomplete assimilation/partial melting, crystallization differentiation, magma mixing and gas saturation. ‘Restitic’ quartz occurs in seven of eight pumice clasts studied. Variations in dissolved H2O and CO2 in quartz-hosted melt inclusions reflect gas saturation in the Oruanui magma and crystallization depths of ∼3.5–7 km. Based on variations of dissolved H2O and CO2 in reentrants, the amount of exsolved gas at the beginning of eruption increased with depth, corresponding to decreasing density with depth. Pre-eruptive mixing of magma with varying gas content implies variations in magma bulk density that would have driven convective mixing. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   
14.
青藏高原东缘缅萨洼金矿成矿流体地质地球化学特征   总被引:3,自引:0,他引:3  
缅萨洼金矿位于中国中轴构造带的中南段,青藏高原的东缘,赋存于金河-箐河断裂带次级断裂羊坪子韧性剪切带中本文根据对该矿床硫化物流体包裹体的氦氩同位素、硫化物的硫同位素以及与硫化物共生的石英的流体包裹体特征、成分以及氢氧同位素组成的测定,讨论了缅萨洼金矿的成矿流体来源及其矿床成因。结果显示,该矿床硫化物流体包裹体中的3He/4He变化较小,为0.69-0.82,显示了地幔流体参与成矿作用的可能性。而4He的含量变化范围较大,一般在2.19-10.62×10-6cm3STP/g(方铅矿除外)与3He/4He相比,40Ar/36Ar的比值则变化较小,一般为251-509。而硫化物的δ34S同位素变化范围在-1.8-2.2‰,平均值为0.5‰,说明硫的地幔来源。与硫化物共生的石英的流体包裹体的类型主要有富液相的盐水溶液包裹体、富气相的盐水溶液包裹体、三相CO2包裹体、纯液相CO2包裹体以及有机流体包裹体。成矿流体的氢氧同位素则显示成矿流体来源于岩浆水(或地幔流体)与大气降水的混合流体,本文认为,缅萨洼金矿的成矿流体为地幔流体与大气降水的混合流体,是渐新世印度大陆与亚洲大陆碰撞之后,该地区大规模走滑与剪切作用过程中,局部伸展作用的产物。  相似文献   
15.
The gold showings at Bleida are hosted in Late Pan-African N50–80 °E quartz–hematite–chlorite 1 tension lenses that are related to the activity of major sinistral sub-east–west thrusts. Ores result from three superimposed stages of fluid migration. Gold occurs in microcracks offsetting the earlier minerals. Fluids evolved from COHN compositions with a saline component to boiling aqueous fluids. Pressure and temperature decreased from 50 MPa and 300 °C to less than 4 MPa and 150 °C. Thus, the gold showings at Bleida were formed in a typical geothermal (epithermal) setting, likely controlled by the Late Pan-African magmatism. To cite this article: A. Barakat et al., C. R. Geoscience 334 (2002) 35–41  相似文献   
16.
新疆东天山石英滩金矿流体包裹体地球化学   总被引:2,自引:1,他引:2  
石英滩金矿地处塔里木板块北缘阿奇山—雅满苏火山弧,容矿围岩为下二叠统阿其克布拉克组陆相火山岩,控矿构造为破火山口环形断裂。流体包裹体特征和温度等参数研究表明石英滩金矿以低温(129℃~236℃)、低盐度(1.91wt%NaCl~2.74wt%NaCl)和浅成(成矿时压力为3×106~32×106Pa,深度小于1km)为特征;流体包裹体稀土元素研究初步得出成矿流体来自中酸性岩浆和火山岩。  相似文献   
17.
Minor granulites (believed to be pre-Triassic), surrounded by abundant amphibolite-facies orthogneiss, occur in the same region as the well-documented Triassic high- and ultrahigh-pressure (HP and UHP) eclogites in the Dabie–Sulu terranes, eastern China. Moreover, some eclogites and garnet clinopyroxenites have been metamorphosed at granulite- to amphibolite-facies conditions during exhumation. Granulitized HP eclogites/garnet clinopyroxenites at Huangweihe and Baizhangyan record estimated eclogite-facies metamorphic conditions of 775–805 °C and ≥15 kbar, followed by granulite- to amphibolite-facies overprint of ca. 750–800 °C and 6–11 kbar. The presence of (Na, Ca, Ba, Sr)-feldspars in garnet and omphacite corresponds to amphibolite-facies conditions. Metamorphic mineral assemblages and PT estimates for felsic granulite at Huangtuling and mafic granulite at Huilanshan indicate peak conditions of 850 °C and 12 kbar for the granulite-facies metamorphism and 700 °C and 6 kbar for amphibolite-facies retrograde metamorphism. Cordierite–orthopyroxene and ferropargasite–plagioclase coronas and symplectites around garnet record a strong, rapid decompression, possibly contemporaneous with the uplift of neighbouring HP/UHP eclogites.

Carbonic fluid (CO2-rich) inclusions are predominant in both HP granulites and granulitized HP/UHP eclogites/garnet clinopyroxenites. They have low densities, having been reset during decompression. Minor amounts of CH4 and/or N2 as well as carbonate are present. In the granulitized HP/UHP eclogites/garnet clinopyroxenites, early fluids are high-salinity brines with minor N2, whereas low-salinity fluids formed during retrogression. Syn-granulite-facies carbonic fluid inclusions occur either in quartz rods in clinopyroxene (granulitized HP garnet clinopyxeronite) or in quartz blebs in garnet and quartz matrices (UHP eclogite). For HP granulites, a limited number of primary CO2 and mixed H2O–CO2(liquid) inclusions have also been observed in undeformed quartz inclusions within garnet, orthopyroxene, and plagioclase which contain abundant, low-density CO2±carbonate inclusions. It is suggested that the primary fluid in the HP granulites was high-density CO2, mixed with a significant quantity of water. The water was consumed by retrograde metamorphic mineral reactions and may also have been responsible for metasomatic reactions (“giant myrmekites”) occurring at quartz–feldspar boundaries. Compared with the UHP eclogites in this region, the granulites were exhumed in the presence of massive, externally derived carbonic fluids and subsequently limited low-salinity aqueous fluids, probably derived from the surrounding gneisses.  相似文献   

18.
Abstract. The petrography, chemical, fluid inclusion and isotope analyses (O, Rb-Sr) were conducted for the shale samples of the Mount McRae Shale collected from the Tom Price, Newman, and Paraburdoo mines in the Hamersley Basin, Western Australia. The Mount McRae Shale at these mines occurs as a footwall unit of the secondary, hematite-rich iron ores derived from the Brockman Iron Formation, one of the largest banded iron formations (BIFs) in the world. Unusually low contents of Na, Ca, and Sr in the shales suggest that these elements were leached away from the shale after deposition. The δ18O (SMOW) values fall in the range of + 15.0 to +17.9 per mil and show the positive correlation with calculated quartz/sericite ratios of the shale samples. This suggests that the oxygen isotopic compositions of shale samples were homogenized and equilibrated by postdepositional event. The pyrite nodules hosted by shales are often rimmed by thin layers of silica of varying crystallinity. Fluid inclusions in quartz crystals rimming a pyrite nodule show homogenization temperatures ranging from 100 to 240C for 47 inclusions and salinities ranging from 0.4 to 12.3 wt% NaCl equivalent for 18 inclusions. These fluid inclusion data give direct evidence for the hydrothermal activity and are comparable to those of the vein quartz collected from the BIF-derived secondary iron ores (Taylor et al, 2001). The Rb-Sr age for the Mount McRae Shale is 1,952 ± 289 Ma and at least 200 million years younger than the depositional age of the Brockman Iron Formation of ∼ 2.5 Ga in age. All the data obtained in this study are consistent with the suggestion that high temperature hydrothermal fluids were responsible for both the secondary iron ore formation and the alteration of the Mount McRae Shale.  相似文献   
19.
Eighty-two core samples were collected from the Spring Valley #1 well which penetrates the Upper Carboniferous strata in the Late Devonian–Early Permian Maritimes Basin. The strata consist of alternating sandstones and mudstones deposited in a continental environment. The objective of this study is to characterize the relationship of sandstone porosity with depth, and to investigate the diagenetic processes related to the porosity evolution. Porosity values estimated from point counting range from 0% to 27.8%, but are mostly between 5% and 20%. Except samples that are significantly cemented by calcite, porosity values clearly decrease with depth. Two phases of calcite cement were distinguished based on Cathodoluminescence, with the early phase being largely dissolved and preserved as minor relicts in the later phase. Feldspar dissolution was extensive and contributed significantly to the development of secondary porosity. Quartz cementation was widespread and increased with depth. Fluid inclusions recorded in calcite and quartz cements indicate that interstitial fluids in the upper part of the stratigraphic column were dominated by waters with salinity lower than that of seawater, the middle part was first dominated by low-salinity waters, then invaded by brines, and the lower part was dominated by brines. Homogenization temperatures of fluid inclusions generally increase with depth and suggest a paleogeothermal gradient of 25 °C/km, which is broadly consistent with that indicated by vitrinite reflectance data. An erosion of 1.1–2.4 (mean 1.75) km of strata is inferred to have taken place above the stratigraphic column. δ18O values of calcite cements (mainly from the late phase) decrease with depth, implying increasing temperatures of formation, as also suggested by fluid-inclusion data. δ13C values of calcite cements range from −13.4‰ to −5.7‰, suggesting that organic matter was an important carbon source for calcite cements. A comparison of the porosity data with a theoretical compaction curve indicates that the upper and middle parts of the stratigraphic column show higher-than-normal porosity values, which are related to significant calcite and feldspar dissolution. Meteoric incursion and carboxylic acids generated from organic maturation were probably responsible for the abundant dissolution events.  相似文献   
20.
Sediment-hosted disseminated gold (SHDG) deposits comprise a major portion of the gold production and reserves in the US. Although presently known to be common only in western North America, SHDG deposits are a significant source of world gold production. These deposits are characterized by extremely fine-grained disseminated gold, hosted primarily by arsenian pyrite. Other metals show very little enrichment although in addition to As, anomalous concentrations of elements such as Sb, Hg, Tl and Ba are utilized as exploration tools. The host rocks are dominantly silty carbonates, but ore concentrations are also present in siliceous and silicified rocks as well as intrusive rocks. Alteration consists of decarbonatization, silicification (jasperoid formation) and argillization, which are arranged both spatially and temporally in that order. Argillic alteration is zoned from kaolinite-dominated cores to sericite-dominated margins. The deposits commonly exhibit significant structural (faults) and stratigraphic (composition/permeability) controls. Until the last few years, SHDG deposits were considered as near-surface, epithermal type deposits in origin. Because of their fine-grained nature and the lack of macroscopic features such as veins, it has proven quite difficult to extract geochemical data that are clearly related to their genesis. However, fluid inclusion data indicate pressures corresponding to depths of 2–4 km under lithostatic conditions. Temperatures are constrained by fluid inclusions and phase equilibria to near 225°C. Stable isotope data from alteration minerals and fluid inclusions indicate that the ore fluids were dominated by meteoric waters, some of which had clearly exchanged oxygen with wallrocks during their passage through the crust. Although the data vary, most ore fluids probably had δD values near −150‰ and δ18O values ranging from −10 to +5‰. Sulfur isotope values reported from SHDG deposits span a wide range, from −30 to +20‰ (sulfides) and 0 to >45‰ (sulfates). Ore-related sulfides (pyrite, realgar) fall at the upper end of the range reported for sulfides. The alteration and mineral assemblage indicate the ore fluids were probably near neutral and gold was likely carried as a bisulfide complex. The depositional mechanism(s) probably included mixing, cooling and oxidation. These mechanisms are consistent with the observed alteration features, i.e. quartz precipitation, calcite dissolution and sericite-kaolinite coexistence. It also explains the presence of both siliceous ores containing native Au and sulfide ores containing Au in pyrite. The extreme variations in sulfur isotopes as seen at Post and fluid inclusion data from Carlin may be indicative of some phase separation (‘boiling’), but such relations have not been documented in other deposits and the importance of phase separation to gold deposition appears minimal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号