首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7386篇
  免费   1521篇
  国内免费   1302篇
测绘学   155篇
大气科学   702篇
地球物理   2737篇
地质学   4047篇
海洋学   958篇
天文学   55篇
综合类   348篇
自然地理   1207篇
  2024年   24篇
  2023年   79篇
  2022年   193篇
  2021年   278篇
  2020年   300篇
  2019年   323篇
  2018年   283篇
  2017年   309篇
  2016年   286篇
  2015年   312篇
  2014年   452篇
  2013年   602篇
  2012年   378篇
  2011年   454篇
  2010年   406篇
  2009年   490篇
  2008年   567篇
  2007年   486篇
  2006年   526篇
  2005年   383篇
  2004年   359篇
  2003年   315篇
  2002年   303篇
  2001年   256篇
  2000年   241篇
  1999年   240篇
  1998年   206篇
  1997年   187篇
  1996年   159篇
  1995年   125篇
  1994年   110篇
  1993年   117篇
  1992年   96篇
  1991年   75篇
  1990年   74篇
  1989年   49篇
  1988年   50篇
  1987年   21篇
  1986年   16篇
  1985年   13篇
  1984年   10篇
  1983年   6篇
  1982年   5篇
  1981年   5篇
  1980年   8篇
  1978年   19篇
  1977年   6篇
  1976年   1篇
  1972年   1篇
  1954年   4篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
111.
Information on the distribution of subsurface temperature and hydraulic heads at 24 observation wells in and around the Tokyo Lowland, the eastern part of the Tokyo Metropolitan area, were examined to make clear the relationship between groundwater and the subsurface thermal environment in the urban area. Minimums in temperature–depth logs due to subsurface temperature increasing at shallow parts were recognized in 21 wells. This fact shows subsurface temperature is affected by ground surface warming in almost all of this area. Deeper than minimums, where the effects of surface warming became relatively small, regional variation is observed as follows: high temperatures are shown in the central part to the southern part, and low temperatures shown in the inland to eastern part. The high temperature area corresponds to an area where the lower boundary of groundwater flow is relatively shallow. This area corresponds also to an area with severe land subsidence resulting from excessive groundwater pumping. It is considered that this high temperature area is formed by the effects of upward groundwater flow affected by hydrogeological conditions and pumping. On the other hand, a comparison between past data (1956–1967) and present data (2001–2003) revealed widespread decreasing temperature in the inland area. This is explained by downward groundwater flow based on an analysis of temperature–depth logs. This fact suggests that subsurface temperature is not only increasing from the effects of surface warming but also decreasing from the effects of groundwater environment change due to pumping.  相似文献   
112.
FLATModel is a two-dimensional shallow-water approximation code with corrections and modifications that create a simulation tool adapted to debris-flows behaviour. FLATModel uses the finite volume method with the numerical implementation of the Godunov scheme and includes correction terms regarding the effect of flow over high slopes and curvature. Additionally, the stop-and-go phenomenon, the basal entrainment and a correction regarding the front inclination of the final deposit are incorporated into FLATModel. In addition, different flow resistance laws were integrated in the numerical code including Bingham, Herschel–Bulkley and Voellmy fluid model. Firstly, our numerical model was validated using analytical solutions of a dam-break scenario and published data on a laboratory experiment. Secondly, three real events, which occurred in the northeastern part of the Iberian Peninsula, were back-calculated. Although field observations of the three events are not very detailed, the back-analyses revealed interesting patterns on the flow dynamics, and the numerical results generally showed good agreement with field data. Comparing the different flow resistance laws, the Voellmy fluid model presents the best behaviour regarding both the flow behaviour and the deposit characteristics. Preliminary simulation runs incorporating the effect of basal entrainment offered satisfactory results, although the final volume is rather sensitive on the selected friction angle of channel-bed material. The outcomes regarding the correction of the calculated front inclination of the final deposit showed that this implementation strongly improves the simulation results and better represents steep fronts of final deposits.  相似文献   
113.
非均匀月壤介质的被动微波辐射传输模拟   总被引:1,自引:1,他引:0  
基于非均匀月壤物理模型和辐射传输方程,模拟月壤介质中的微波辐射传输特性,探讨频率、月壤厚度等与月表亮温的关系。结果表明:在低频段,月壤微波辐射亮温的动态变化范围较大,可探测的月壤厚度大,3 GHz时的最大可探测月壤厚度达12.4 m;在高频段对应的可探测月壤厚度较小,特别是从50GHz往后的频率段内,最大可探测月壤厚度均小于2 m。不同频率的亮温-厚度变化曲线没有交叉点,且频率越高,所能探测的月壤厚度越小。根据模拟结果,建立了月壤厚度与亮温的查找表。基于查找表,利用单个波段的亮温数据即可得到月壤厚度信息。  相似文献   
114.
赵振宏  王冬  陶正平  李瑛 《地质通报》2008,27(8):1131-1137
地下水流系统和循环模式分析是研究地下水形成机理的基础,对正确认识和评价地下水资源具有重要意义。鄂尔多斯高原在含水系统和众多地下水排泄区的控制下,形成了多个不同规模、不同循环深度、相互独立的地下水流系统。PACKER系统分层试验测定的不同深度水头的数据证明,鄂尔多斯高原地下水流系统存在托斯多层水流模式,区域性水流系统一般包含浅循环、中间循环和深循环3个循环系统。浅循环系统的发育深度在200m以内,深循环系统的发育深度大于400m。  相似文献   
115.
受限于地震波主波长的1/4,常规地震处理难以分辨较薄煤层。基于模型的波阻抗反演虽然克服了厚、薄煤层计算问题.但因难以得到准确的高频部分,很多情况下反演结果的精度和分辨率往往不能满足地质预测的要求。小波边缘分析建模波阻抗反演方法是从地震数据中提取地震特征参数,用于建模并参与迭代反演。该方法即可以弥补反演过程中高频成分的误差,减少对钻井数据的依赖程度,得到较为合理的初始模型,又可提高反演的精度和分辨率.使反演结果更好的反映实际地下地质情况。利用该方法,对大井-将军庙及新疆红沙泉2个勘探区的侏罗系中统西山窑组含煤地层进行波阻抗反演,反演结果与钻井资料进行比较,其中大井一将军庙0802及0809号孔单煤层厚度误差分别为3%、8%.新疆红沙泉多煤层厚度及煤层之间的夹层厚度预测结果除B6煤层误差较大外,其它误差均小于7%.可见该反演方法的计算结果比较准确。  相似文献   
116.
依托“西部煤炭资源高精度三维地震勘探技术”项目工程,对晋城某矿南翼大巷东南区5m×5m×1ms的三维地震数据体,采用三维地震属性参数预测煤层厚度及其变化规律:沿3煤层、15煤层10ms时窗提取地震属性42种,根据钻孔资料,计算出煤厚与地震属性相关系数;从中优选出相关系数大于0.35的地震属性,其中3煤层9个、15煤层10个;然后进行地震属性互相关分析,优选出与3煤、15煤层厚度相关系数较大的4种属性,建立预测煤厚的BP神经网络模型,分别选取3煤层12个、15煤层4个实测数据作为学习训练和测试样本,以钻孔地震属性作为学习样本,对网络进行训练,最终获得全区煤层厚度。经与预留钻孔成果资料对比,预测精度较高,结果可用。  相似文献   
117.
In this paper, an inverse mapping is used to transform the previously-derived analytical solutions from a local elliptical coordinate system into a conventional Cartesian coordinate system. This enables a complete set of exact analytical solutions to be derived rigorously for the pore-fluid velocity, stream function, and excess pore-fluid pressure around and within buried inclined elliptic inclusions in pore-fluid-saturated porous rocks. To maximize the application range of the derived analytical solutions, the focal distance of an ellipse is used to represent the size of the ellipse, while the length ratio of the long axis to the short one is used to represent the geometrical shape of the ellipse. Since the present analytical solutions are expressed in a conventional Cartesian coordinate system, it is convenient to investigate, both qualitatively and quantitatively, the distribution patterns of the pore-fluid flow and excess pressure around and within many different families of buried inclined elliptic inclusions. The major advantage in using the present analytical solution is that they can be conveniently computed in a global Cartesian coordinate system, which is widely used in many scientific and engineering computations. As an application example, the present analytical solutions have been used to investigate how the dip angle of an inclined elliptic inclusion affects the distribution patterns of the pore-fluid flow and excess pore-fluid pressure when the permeability ratio of the elliptic inclusion is of finite but nonzero values.  相似文献   
118.
This article presents a micromechanical approach to the problem of unsaturated water flow in heterogeneous porous media in transient conditions. The numerical formulation is based on the two-scale model obtained previously by periodic homogenization. It allows for a coupled solution of the non-linear flow equations at macroscopic and microscopic scales and takes into account the macroscopic anisotropy of the medium and the local non-equilibrium of the capillary pressure. The model was applied to simulate two-dimensional water infiltration at constant flux into an initially dry medium containing inclusions of square and rectangular shapes. The numerical results showed the influence of the inclusion–matrix conductivity ratio and the local geometry on the macroscopic behavior. The influence of the conductivity ratio manifested itself by the acceleration or retardation of the onset of the macroscopic water flux at the outlet, while the local geometry (anisotropy) significantly affected the macroscopic spatial distribution of the water flux. Such type of approach can be extended to simulate coupled phenomena (for example hydro-mechanical problems) with evolving local geometry.  相似文献   
119.
The dynamics and thermodynamics of large ash flows   总被引:6,自引:6,他引:0  
 Ash flow deposits, containing up to 1000 km3 of material, have been produced by some of the largest volcanic eruptions known. Ash flows propagate several tens of kilometres from their source vents, produce extensive blankets of ash and are able to surmount topographic barriers hundreds of metres high. We present and test a new model of the motion of such flows as they propagate over a near horizontal surface from a collapsing fountain above a volcanic vent. The model predicts that for a given eruption rate, either a slow (10–100 m/s) and deep (1000–3000 m) subcritical flow or a fast (100–200 m/s) and shallow (500–1000 m) supercritical flow may develop. Subcritical ash flows propagate with a nearly constant volume flux, whereas supercritical flows entrain air and become progressively more voluminous. The run-out distance of such ash flows is controlled largely by the mass of air mixed into the collapsing fountain, the degree of fragmentation and the associated rate of loss of material into an underlying concentrated depositional system, and the mass eruption rate. However, in supercritical flows, the continued entrainment of air exerts a further important control on the flow evolution. Model predictions show that the run-out distance decreases with the mass of air entrained into the flow. Also, the mass of ash which may ascend from the flow into a buoyant coignimbrite cloud increases as more air is entrained into the flow. As a result, supercritical ash flows typically have shorter runout distances and more ash is elutriated into the associated coignimbrite eruption columns. We also show that one-dimensional, channellized ash flows typically propagate further than their radially spreading counterparts. As a Plinian eruption proceeds, the erupted mass flux often increases, leading to column collapse and the formation of pumiceous ash flows. Near the critical conditions for eruption column collapse, the flows are shed from high fountains which entrain large quantities of air per unit mass. Our model suggests that this will lead to relatively short ash flows with much of the erupted material being elutriated into the coignimbrite column. However, if the mass flux subseqently increases, then less air per unit mass is entrained into the collapsing fountain, and progressively larger flows, which propagate further from the vent, will develop. Our model is consistent with observations of a number of pyroclastic flow deposits, including the 1912 eruption of Katmai and the 1991 eruption of Pinatubo. The model suggests that many extensive flow sheets were emplaced from eruptions with mass fluxes of 109–1010 kg/s over periods of 103–105 s, and that some indicators of flow "mobility" may need to be reinterpreted. Furthermore, in accordance with observations, the model predicts that the coignimbrite eruption columns produced from such ash flows rose between 20 and 40 km. Received: 25 August 1995 / Accepted: 3 April 1996  相似文献   
120.
The results of precision temperature logs made to depths of several hundred meters in some 80 wells in Western Canada, most of which are located in the Prairie Provinces, show evidence of warming at the ground surface in the 0.5 K to 3.5 K range (average=2.2±0.7 K, for 80 unevenly distributed sites). Modeling shows that this warming mostly pertains to this century and it has been most substantal in the last four decades if the ramp function of the linear increase of surface temperature is assumed. Using the step function model's increase of surface temperature (land clearing, forest fires, etc.) the calculated onset of warming would pertain mostly to the last two decades. Contour maps of ground temperatures currently and previously and a contour map of the ground warming magnitude dilineate a large regional character of the ground temperature change at the southern marigin of permafrost for the large area of the Prairie Provinces. In many cases however, the magnitude of ground warming is much larger than the magnitude of air warming. This is especially evident for the northern areas of Alberta in the boreal forest ecoprovince. The magnitude of ground warming is equal to the magnitude of surface air warming in southern Alberta in the grassland and aspen parkland ecoprovinces. The analysis of the temperature depth response to the surface warming from well data shows the integrated effect of surface air warming together with the increases in ground temperature due to natural terrain effects and other anthropogenical changes to the surface of the earth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号