全文获取类型
收费全文 | 60篇 |
免费 | 5篇 |
国内免费 | 14篇 |
专业分类
大气科学 | 1篇 |
地球物理 | 11篇 |
地质学 | 53篇 |
海洋学 | 4篇 |
综合类 | 2篇 |
自然地理 | 8篇 |
出版年
2023年 | 1篇 |
2022年 | 1篇 |
2020年 | 2篇 |
2019年 | 2篇 |
2018年 | 2篇 |
2017年 | 1篇 |
2016年 | 2篇 |
2015年 | 2篇 |
2014年 | 1篇 |
2013年 | 2篇 |
2012年 | 9篇 |
2011年 | 3篇 |
2010年 | 2篇 |
2009年 | 9篇 |
2008年 | 4篇 |
2007年 | 2篇 |
2006年 | 4篇 |
2005年 | 5篇 |
2004年 | 3篇 |
2003年 | 4篇 |
2002年 | 3篇 |
2000年 | 6篇 |
1999年 | 1篇 |
1998年 | 3篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1991年 | 1篇 |
排序方式: 共有79条查询结果,搜索用时 17 毫秒
1.
2.
为了研究海萝的非繁殖季节孢子育苗方法,进行了2个实验来研究海萝种藻冷冻保存对其释放孢子量及孢子附着的影响。1)6组不同风干程度海萝种藻在18℃冷冻保存6个月后取出在16℃水中进行孢子的释放,种藻风干到干重为原鲜重约25%的组,孢子的保存效果最好,该组种藻释放孢子量约为对照组(未经风干和保存的种藻)的77.6%,且孢子的附着率与对照组的差异性不显著;2)风干到重量为原鲜重约1/4的种藻分别保存于18℃、36℃、80℃,在保存8个月后,每一保存温度下的种藻分别在8℃、12℃、16℃、20℃水中释放孢子,种藻在水温12℃下释放的孢子量最多;保存于36℃、80℃的种藻较保存于18℃的释放孢子量多。本实验结果为海萝的非繁殖季节孢子育苗找到一种简便的方法,也为该属藻类的种质保存提供了参考。 相似文献
3.
Chronology of the high-pressure metamorphism of Norwegian garnet peridotites/pyroxenites 总被引:8,自引:0,他引:8
Eclogite facies mineral assemblages are variably preserved in mafic and ultramafic rocks within the Western Gneiss Region (WGR) of Norway. Mineralogical and microstructural data indicate that some Mg–Cr-rich, Alpine-type peridotites have had a complex metamorphic history. The metamorphic evolution of these rocks has been described in terms of a seven-stage evolutionary model; each stage is characterized by a specific mineral assemblage. Stages II and III both comprise garnet-bearing mineral assemblages. Garnet-bearing assemblages are also present in Fe–Ti-rich peridotites which commonly occur as layers in mafic complexes. Sm–Nd isotopic results are reported for mineral and whole rock samples from both of these types of peridotites and related rocks. The partitioning of Sm and Nd between coexisting garnet and clinopyroxene is used to assess chemical equilibrium. One sample of Mg–Cr-type peridotite shows non-disturbed partitioning of Sm and Nd between Stage II garnet and clinopyroxene pairs and yields a garnet–clinopyroxene–whole-rock date of 1703 ± 29 Ma (I= 0.51069, MSWD = 0.04). This is the best estimate for the age of the Stage II high-P assemblage. Other Stage II garnet–clinopyroxene pairs reflect later disturbance of the Sm–Nd system and yield dates in the range 1303 to 1040 Ma. These dates may not have any geological significance. Stage III garnet–clinopyroxene pairs typically have equilibrated Sm–Nd partitioning and two samples yield dates of 437 ± 58 and 511 ± 18 Ma. This suggests that equilibration of the Stage III high-P assemblage is related to the Caledonian orogeny and is more or less contemporaneous with high-P metamorphism of ‘country-rock’eclogites in the surrounding gneisses. The Sm–Nd mineral data for the Fe–Ti-rich garnet peridotites and for a superferrian eclogite, which occurs as a dyke within the Gurskebotn Mg–Cr-type peridotite, are consistent with a Palaeozoic high-P metamorphism. Finally a synoptic P–T–t path is proposed for the Mg–Cr-type peridotites which is consistent with the petrological and geochronological data. 相似文献
4.
5.
The prograde deserpentinized peridotites from the talc zone in the Happo-O’ne complex, central Japan, show differences in their field relation and mineral assemblage with the high-P retrograde peridotites of the other part of the complex. They show a mineral assemblage, olivine + talc + antigorite ± prograde tremolite ± chlorite, formed by thermal metamorphism around the granitic intrusion at T, 500-650 °C and P < 7 kbar. The olivine has numerous opaque inclusions and high Fo (91.5-96.5) relative to the retrograde olivine, reflecting its formation by deserpentinization. The prograde tremolite, which is low in Al2O3 (<1.0 wt.%), Cr2O3 (<0.35 wt.%), and Na2O (<0.6 wt.%) but high in Mg# (up to 0.98) and SiO2 (up to 59.9 wt.%), is different in size, shape and chemistry from the retrograde tremolite. The prograde peridotites display a U-shaped REE pattern (0.02-0.5 times PM), similar to diopside-zone retrograde metaperidotites, possible protoliths. They are enriched in LILE (e.g., Cs, Pb, Sr, Rb) relative to HFSE (e.g., Ta, Hf, Zr, Nb), like their protoliths, because of their local re-equilibration with the fluid released during dehydration of the protoliths. They have high contents of REE and some trace elements (e.g., Cs, Th, U, Ta) relative to their protoliths because of an external-element addition from the granitic magma. In-situ analyses of peridotitic silicates confirmed that the prograde tremolite and talc display a spoon-shaped primitive mantle (PM)-normalized REE pattern (0.1-3 times PM) in which LREE are higher than HREE contents. The prograde tremolite is depleted in Al, Na, Cr, Sc, V, Ti, B, HREE and Li, but is enriched in Si, Cs, U, Th, HFSE (Hf, Zr, Nb, Ta), Rb and Ba relative to the retrograde tremolite; the immobile-element depletion in this tremolite is inherited from its source (antigorite + secondary diopside), whereas the depletion of mobile elements (e.g., Li, B, Na, Al) is ascribed to their mobility during the deserpentinization and/or the depleted character of the source of tremolite. The enrichment of HFSE and LILE in the prograde tremolite is related to an external addition of these elements from fluid/melt of the surrounding granitic magma and/or in situ equilibrium with LILE-bearing fluid released during dehydration of serpentinized retrograde metaperidotites and olivine-bearing serpentinites (protoliths). The prograde olivine is higher in REE and most trace-element contents than the retrograde one due to the external addition of these elements; it is enriched in B, Co and Ni, but depleted in Li that was liberated during deserpentinization by prograde metamorphism. 相似文献
6.
Deep subduction of mantle-derived garnet peridotites from the Su-Lu UHP metamorphic terrane in China 总被引:25,自引:1,他引:25
Garnet peridotites from the southern Su‐Lu ultra‐high‐pressure metamorphic (UHPM) terrane, eastern China, contain porphyroblastic garnet with aligned inclusions comprising a low‐P–T mineral assemblage (chlorite, hornblende, Na‐gedrite, Na‐phlogopite, talc, spinel and pyrite). Orthopyroxene porphyroblasts show fine exsolution lamellae of clinopyroxene and minor chromite. A clinopyroxene inclusion in garnet shows some orthopyroxene exsolution lamellae. Both the rims of porphyroblastic pyroxene and garnet and the matrix pyroxene and garnet crystallized at the expense of olivine. This is interpreted as a result of metasomatism of the peridotites by an SiO2‐rich melt at UHP conditions. A chromian garnet further overgrew on the rims of the garnet. The XMg values (Mg/(Mg+Fe)) of porphyroblastic garnet decrease from core to rim and vary in different peridotite samples, while the compositions of both the porphyroblastic and the matrix pyroxene are similar in terms of Ca–Mg–Fe. The Mg‐rich cores of porphyroblastic garnet and orthopyroxene record high temperatures and pressures (c. 1000 °C, ≥5.1 GPa), whereas the matrix minerals, including the rims of porphyroblasts, record much lower P–T (c. 4.2 GPa, c. 760 °C). Sm–Nd data give apparent isochron ages of c. 380 Ma and negative εNd(0) values (c.?9). These dates are considered meaningless due to isotopic disequilibrium between garnet cores and the rest of the rocks. The isotopic disequilibrium was probably caused by metasomatism of the peridotites by melt/fluids derived from the coevally subducted crustal materials. On the other hand, the Rb–Sr isotopic systems of phlogopite and clinopyroxene appear to have reached equilibrium and record a cooling age of c. 205 Ma. It is suggested that the garnet peridotites were originally emplaced into a low‐P–T environment prior to the c. 220 Ma continental collision, during which they were subducted together with crustal rocks to mantle depth and subjected to UHP metamorphism. An important corollary is that at least some of the coevally subducted crustal rocks in the Su‐Lu terrane have been subjected to peak metamorphism at P–T conditions much higher than presently estimated (≥2.7 GPa, ≤800 °C). 相似文献
7.
中国东部上地幔岩石相转变及其意义 总被引:2,自引:0,他引:2
中国东部新生代玄武岩和大别-苏鲁超高压变质带中的含石榴石相橄榄岩, 带来了发生在上地幔的尖晶石→石榴石相转变和铝辉石→贫铝辉石+石榴石的重要信息, 为中国东部上地幔岩石结构分层奠定了重要基础.通过岩石学与实验岩石学的研究, 推导出发生相转变的P-T条件, 为建立中国东部大陆上地幔岩石分层结构提供了重要约束.尖晶石二辉橄榄岩向石榴石二辉橄榄岩相转变发生在55~70km, 随着深度增加, 石榴石二辉橄榄岩从富铝石榴石二辉橄榄岩(70~120km) 转变为贫铝石榴石二辉橄榄岩(> 120~150km). 相似文献
8.
Alireza Nadimi 《Earth and Planetary Science Letters》2002,203(1):93-104
The mantle peridotites of Neyriz record two successive episodes of plastic deformations; the first one related to the igneous accretion of the lithosphere and the second one developed during the first stage of the emplacement of the peridotites. These two events have been distinguished on the basis of microstructural criteria. The diapiric pattern, particularly relevant to the mantle process beneath spreading ridges, features vertical flow lines and elliptic flow plane trajectories in a pipe and extends along the ridge axis about 5 km. These structures rotate to horizontal and diverge in every direction in a narrow transition zone, a few hundred meters thick, below the Moho discontinuity. Such a diapiric pattern has been recognized in a few places along the Neyriz paleo-ridge. A large amount of magma passed through these mantle diapirs that were probably the main zones feeding the overlying magma chamber. The most common pattern features very regular structures over several kilometers along the strike of the paleo-ridge: the flow plane dips away from the ridge axis, and the flow line is parallel to the spreading direction. This flow pattern is frozen during the gradual accretion of the lithospheric mantle away from the ridge in a steady-state spreading regime. A shear-sense inversion at just below the Moho is commonly observed, pointing to forced asthenospheric flow. The reconstructed orientation of the Neyriz paleo-spreading center is 105°, compatible with the geometry and orientation of harzburgite foliations and lineations and sheeted dikes. 相似文献
9.
10.
《International Geology Review》2012,54(7):787-803
Slow–ultraslow spreading oceans are mostly floored by mantle peridotites and are typified by rifted continental margins, where subcontinental lithospheric mantle is preserved. Structural and petrologic investigations of the high-pressure (HP) Alpine Voltri Massif ophiolites, which were derived from the Late Jurassic Ligurian Tethys fossil slow–ultraslow spreading ocean, reveal the fate of the oceanic peridotites/serpentinites during subduction to depths involving eclogite-facies conditions, followed by exhumation. The Ligurian Tethys was formed by continental extension within the Europe–Adria lithosphere and consisted of sea-floor exposed mantle peridotites with an uppermost layer of oceanic serpentinites and of subcontinental lithospheric mantle at the rifted continental margins. Plate convergence caused eastward subduction of the oceanic lithosphere of the Europe plate and the uppermost serpentinite layer of the subducting slab formed an antigorite serpentinite-subduction channel. Sectors of the rather unaltered mantle lithosphere of the Adria extended margin underwent ablative subduction and were detached, embedded, and buried to eclogite-facies conditions within the serpentinite-subduction channel. At such P–T conditions, antigorite serpentinites from the oceanic slab underwent partial HP dehydration (antigorite dewatering and growth of new olivine). Water fluxing from partial dehydration of host serpentinites caused partial HP hydration (growth of Ti-clinohumite and antigorite) of the subducted Adria margin peridotites. The serpentinite-subduction channel (future Beigua serpentinites), acting as a low-viscosity carrier for high-density subducted rocks, allowed rapid exhumation of the almost unaltered Adria peridotites (future Erro–Tobbio peridotites) and their emplacement into the Voltri Massif orogenic edifice. Over in the past 35 years, this unique geologic architecture has allowed us to investigate the pristine structural and compositional mantle features of the subcontinental Erro–Tobbio peridotites and to clarify the main steps of the pre-oceanic extensional, tectonic–magmatic history of the Europe–Adria asthenosphere–lithosphere system, which led to the formation of the Ligurian Tethys. Our present knowledge of the Voltri Massif provides fundamental information for enhanced understanding, from a mantle perspective, of formation, subduction, and exhumation of oceanic and marginal lithosphere of slow–ultraslow spreading oceans. 相似文献