首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6942篇
  免费   1792篇
  国内免费   1219篇
测绘学   88篇
大气科学   94篇
地球物理   3296篇
地质学   4276篇
海洋学   212篇
天文学   1084篇
综合类   602篇
自然地理   301篇
  2024年   19篇
  2023年   63篇
  2022年   175篇
  2021年   258篇
  2020年   186篇
  2019年   331篇
  2018年   265篇
  2017年   266篇
  2016年   313篇
  2015年   302篇
  2014年   353篇
  2013年   392篇
  2012年   363篇
  2011年   344篇
  2010年   328篇
  2009年   544篇
  2008年   523篇
  2007年   481篇
  2006年   539篇
  2005年   422篇
  2004年   462篇
  2003年   382篇
  2002年   319篇
  2001年   324篇
  2000年   321篇
  1999年   232篇
  1998年   253篇
  1997年   175篇
  1996年   175篇
  1995年   174篇
  1994年   162篇
  1993年   132篇
  1992年   110篇
  1991年   52篇
  1990年   41篇
  1989年   47篇
  1988年   38篇
  1987年   30篇
  1986年   9篇
  1985年   10篇
  1984年   4篇
  1983年   2篇
  1980年   1篇
  1979年   21篇
  1978年   1篇
  1977年   1篇
  1954年   8篇
排序方式: 共有9953条查询结果,搜索用时 46 毫秒
961.
962.
We present evidence for interaction between the supernova remnant (SNR) G357.7+0.3 and nearby molecular clouds, leading to the formation of wind-swept structures and bright emission rims. These features are not observed at visual wavelengths, but are clearly visible in mid-infrared mapping undertaken using the Spitzer Space Telescope . Analysis of one of these clouds, the bright cometary structure G357.46+0.60, suggests that it contains strong polycyclic aromatic hydrocarbon emission features in the 5.8 and 8.0 μm photometric bands, and that these are highly variable over relatively small spatial scales. The source is also associated with strong variations in electron density; a far-infrared continuum peak associated with dust temperatures of ∼30 K; and has previously been observed in the 1720 MHz maser transition of OH, known to be associated with SNR shock excitation of interstellar clouds. This source also appears to contain a young stellar object (YSO) within the bright rim structure, with a steeply rising spectrum between 1.25 and 24 μm. If the formation of this star has been triggered recently by the SNR, then YSO modelling suggests a stellar mass  ∼5–10 M  , and luminosity   L YSO∼102–2 × 103 L  .
Finally, it is noted that a further, conical emission region appears to be associated with the Mira V1139 Sco, and it is suggested that this may represent the case of a Mira outflow interacting with a SNR. If this is the case, however, then the distance to the SNR must be ∼half of that determined from CS   J = 2–1  and 3–2 line radial velocities.  相似文献   
963.
We examine the proposal that the H  i 'high-velocity' clouds (HVCs) surrounding the Milky Way and other disc galaxies form by condensation of the hot galactic corona via thermal instability. Under the assumption that the galactic corona is well represented by a non-rotating, stratified atmosphere, we find that for this formation mechanism to work the corona must have an almost perfectly flat entropy profile. In all other cases, the growth of thermal perturbations is suppressed by a combination of buoyancy and thermal conduction. Even if the entropy profile were nearly flat, cold clouds with sizes smaller than  10 kpc  could form in the corona of the Milky Way only at radii larger than  100 kpc  , in contradiction with the determined distances of the largest HVC complexes. Clouds with sizes of a few kpc can form in the inner halo only in low-mass systems. We conclude that unless even slow rotation qualitatively changes the dynamics of a corona, thermal instability is unlikely to be a viable mechanism for formation of cold clouds around disc galaxies.  相似文献   
964.
We conduct high-resolution collisionless N -body simulations to investigate the tidal evolution of dwarf galaxies on an eccentric orbit in the Milky Way (MW) potential. The dwarfs originally consist of a low surface brightness stellar disc embedded in a cosmologically motivated dark matter halo. During 10 Gyr of dynamical evolution and after five pericentre passages, the dwarfs suffer substantial mass loss and their stellar component undergoes a major morphological transformation from a disc to a bar and finally to a spheroid. The bar is preserved for most of the time as the angular momentum is transferred outside the galaxy. A dwarf spheroidal (dSph) galaxy is formed via gradual shortening of the bar. This work thus provides a comprehensive quantitative explanation of a potentially crucial morphological transformation mechanism for dwarf galaxies that operates in groups as well as in clusters. We compare three cases with different initial inclinations of the disc and find that the evolution is fastest when the disc is coplanar with the orbit. Despite the strong tidal perturbations and mass loss, the dwarfs remain dark matter dominated. For most of the time, the one-dimensional stellar velocity dispersion, σ, follows the maximum circular velocity, V max, and they are both good tracers of the bound mass. Specifically, we find that   M bound∝ V 3.5max  and     in agreement with earlier studies based on pure dark matter simulations. The latter relation is based on directly measuring the stellar kinematics of the simulated dwarf, and may thus be reliably used to map the observed stellar velocity dispersions of dSphs to halo circular velocities when addressing the missing satellites problem.  相似文献   
965.
966.
We perform a stability test of triaxial models in Modified Newtonian Dynamics (MOND) using N -body simulations. The triaxial models considered here have densities that vary with   r −1  in the centre and   r −4  at large radii. The total mass of the model varies from 108 to  1010 M  , representing the mass scale of dwarfs to medium-mass elliptical galaxies, respectively, from deep MOND to quasi-Newtonian gravity. We build triaxial galaxy models using the Schwarzschild technique, and evolve the systems for 200 Keplerian dynamical times (at the typical length-scale of 1.0 kpc). We find that the systems are virial overheating, and in quasi-equilibrium with the relaxation taking approximately 5 Keplerian dynamical times (1.0 kpc). For all systems, the change of the inertial (kinetic) energy is less than 10 per cent (20 per cent) after relaxation. However, the central profile of the model is flattened during the relaxation and the (overall) axis ratios change by roughly 10 per cent within 200 Keplerian dynamical times (at 1.0 kpc) in our simulations. We further find that the systems are stable once they reach the equilibrium state.  相似文献   
967.
968.
We use N -body simulations to study the tidal evolution of globular clusters (GCs) in dwarf spheroidal (dSph) galaxies. Our models adopt a cosmologically motivated scenario in which the dSph is approximated by a static Navarro, Frenk & White halo with a triaxial shape. We apply our models to five GCs spanning three orders of magnitude in stellar density and two in mass, chosen to represent the properties exhibited by the five GCs of the Fornax dSph. We show that only the object representing Fornax's least dense GC (F1) can be fully disrupted by Fornax's internal tidal field – the four denser clusters survive even if their orbits decay to the centre of Fornax. For a large set of orbits and projection angles, we examine the spatial and velocity distribution of stellar debris deposited during the complete disruption of an F1-like GC. Our simulations show that such debris appears as shells, isolated clumps and elongated overdensities at low surface brightness (≥26 mag arcsec−2), reminiscent of substructure observed in several Milky Way dSphs. Such features arise from the triaxiality of the galaxy potential and do not dissolve in time. The kinematics of the debris depends strongly on the progenitor's orbit. Debris associated with box and resonant orbits does not display stream motions and may appear 'colder'/'hotter' than the dSph's field population if the viewing angle is perpendicular/parallel to the progenitor's orbital plane. In contrast, debris associated with loop orbits shows a rotational velocity that may be detectable out to a few kpc from the galaxy centre. Chemical tagging that can distinguish GC debris from field stars may reveal whether the merger of GCs contributed to the formation of multiple stellar components observed in dSphs.  相似文献   
969.
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号