The contravariant components of the wave-propagation metric tensor equal half the second-order partial derivatives of the selected eigenvalue of the Christoffel matrix with respect to the slowness-vector components. The relations of the wave-propagation metric tensor to the curvature matrix and Gaussian curvature of the slowness surface and to the curvature matrix and Gaussian curvature of the ray-velocity surface are demonstrated with the help of ray-centred coordinates. 相似文献
Active, carbonate‐mineralizing microbial mats flourish in a tropical, highly evaporative, marine‐fed lagoonal network to the south of Cayo Coco Island (Cuba). Hypersaline conditions support the development of a complex sedimentary microbial ecosystem with diverse morphologies, a variable intensity of mineralization and a potential for preservation. In this study, the role of intrinsic (i.e. microbial) and extrinsic (i.e. physicochemical) controls on microbial mat development, mineralization and preservation was investigated. The network consists of lagoons, forming in the interdune depressions of a Pleistocene aeolian substratum; they developed due to a progressive increase in sea‐level since the Holocene. The hydrological budget in the Cayo Coco lagoonal network changes from west to east, increasing the salinity. This change progressively excludes grazers and increases the saturation index of carbonate minerals, favouring the development and mineralization of microbial mats in the easternmost lagoons. Detailed mapping of the easternmost lagoon shows four zones with different flooding regimes. The microbial activity in the mats was recorded using light–dark shifts in conjunction with microelectrode O2 and HS? profiles. High rates of O2 production and consumption, in addition to substantial amounts of exopolymeric substances, are indicative of a potentially strong intrinsic control on mineralization. Seasonal, climate‐driven water fluctuations are key for mat development, mineralization, morphology and distribution. Microbial mats show no mineralization in the permanently submersed zone, and moderate mineralization in zones with alternating immersion and exposure. It is suggested that mineralization is also driven by water‐level fluctuations and evaporation. Mineralized mats are laminated and consist of alternating trapping and binding of grains and microbially induced magnesium calcite and dolomite precipitation. The macrofabrics of the mats evolve from early colonizing Flat mats to complex Cerebroid or Terrace structures. The macrofabrics are influenced by the hydrodynamic regime: wind‐driven waves inducing relief terraces in windward areas and flat morphologies on the leeward side of the lagoon. Other external drivers include: (i) storm events that either promote (for example, by bioclasts covering) or prevent (for example, by causing erosion) microbial mat preservation; and (ii) subsurface degassing, through mangrove roots and desiccation cracks covered by Flat mats (i.e. forming Hemispheroids and Cerebroidal structures). These findings provide in‐depth insights into understanding fossil microbialite morphologies that formed in lagoonal settings. 相似文献
Syntectonic plutons emplaced in shallow crust often contain intermediate-to low-temperature deformation microstructures but
lack a high-temperature, subsolidus deformation fabric, although the relict magmatic fabric is preserved. The Proterozoic
Vellaturu granite emplaced at the eastern margin of the northern Nallamalai fold belt, south India during the late phase of
regional deformation has a common occurrence of intermediate-to low-temperature deformation fabric, superimposed over magmatic
fabric with an internally complex pattern. But high-T subsolidus deformation microstructure and fabric are absent in this
pluton. The main crystal plastic deformation and fluid enhanced reaction softening was concentrated along the margin of the
granite body. Resulting granite mylonites show Y-maximum c-axis fabric in completely recrystallized quartz ribbonds, dynamic recrystallization of perthites, and myrmekite indicative
of fabric development under intermediate temperature (∼ 500–400°C). The weakly-deformed interior shows myrmekite, feldspar
microfracturing and limited bulging recrystallization of quartz. The abundance of prism subgrain boundaries is indicative
of continuing deformation through low-temperature (∼ 300°C). The relative rates of cooling influenced by advective heat transfer
and deformation of the pluton seem to control the overall subsolidus fabric development. The rapid advective heat transfer
from the interior in the early stages of subsolidus cooling was followed by slow cooling through intermediate temperature
window as a well-developed phyllosilicate rich mylonitic skin around the granite body slowed down conductive heat loss. Low-T
crystal plastic deformation of quartz was effected at a late stage of cooling and deformation of the shallow crustal granite
body emplaced within the greenschist facies Nallamlai rocks. 相似文献
Moment tensors of eleven major earthquakes in the Tibetan Plateau and its surrounding region from 1966 to 1980 are estimated
by generalized inverse technique. The seismic source time function and focal depth are immediately determined in the inversion.
The results show that moment tensors of some events differ significantly from double couple, the deviation increases with
decreasing plunge angle of null axis. All these events occurred in the upper crust, much shallower than those reported so
far, for example, in NEIS Bulletin. Focal mechanism solution obtained from the moment tensors are consistent with the idea
that the Indian plate collides northwards with the Eurasian plate and that an eastward spreading exists in the crust of the
Tibetan Plateau. The stress drops for earthquakes of intraplate are systematically higher than those of earthquakes in suture
zone. The source process duration becomes longer with seismic moment, but for the same seismic moment, the process duration
for earthquakes in suture zone is about 1.4 times of those for intraplate event, these results suggest that the earthquakes
near suture zone may be of a special characteristics in source process differently from those in intraplate.
The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, 423 – 434, 1992. 相似文献
The influence of rock fabric on physical weathering due to the salt crystallization of selected brecciated dolostones is discussed. These dual-porosity dolostones are representative of heterogeneous and anisotropic building rocks, and present highly complex and heterogeneous rock fabric features. The pore structure of the matrix and clasts is described in terms of porosity and pore size distribution, whereas the relative strength for each textural component is assessed using the Knoop hardness test. The whole characterisation process was carried out using the same samples as those used in the standard salt durability test (EN-12370), including connected porosity, the water saturation coefficient, fissure density, compressional wave velocity and waveform energy.
Results show the most important rock fabric elements to be considered are the matrix and clast properties and the nature of fissures. Firstly, a relatively weak matrix was the focus of major granular disintegration as it presents high porosity, low pore radius and reduced strength. Secondly, narrow micro-fissures appear to be important in the decay process due to the effectiveness of crystallization pressure generated by salt growth. On the contrary, macro-fissures do not contribute greatly to rock decay since they act as sinks to consume the high supersaturations caused by growth of large crystals. Additionally, an analysis of stress generated by crystallization was carried out based on the general situation of a lenticular crystal geometry. Finally, the relationships between whole petrophysical properties and durability were established using a principal component analysis. This analysis has clearly established that the durability of rocks affected by salt crystallization mechanisms diminishes in weaker and anisotropic rocks with high porosity and fissure density. 相似文献