首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7629篇
  免费   1508篇
  国内免费   1976篇
测绘学   133篇
大气科学   4022篇
地球物理   1558篇
地质学   2245篇
海洋学   620篇
天文学   189篇
综合类   272篇
自然地理   2074篇
  2024年   75篇
  2023年   182篇
  2022年   324篇
  2021年   441篇
  2020年   435篇
  2019年   448篇
  2018年   389篇
  2017年   407篇
  2016年   429篇
  2015年   432篇
  2014年   531篇
  2013年   931篇
  2012年   548篇
  2011年   472篇
  2010年   443篇
  2009年   540篇
  2008年   556篇
  2007年   522篇
  2006年   446篇
  2005年   377篇
  2004年   322篇
  2003年   323篇
  2002年   253篇
  2001年   199篇
  2000年   192篇
  1999年   159篇
  1998年   151篇
  1997年   143篇
  1996年   109篇
  1995年   79篇
  1994年   61篇
  1993年   52篇
  1992年   40篇
  1991年   28篇
  1990年   21篇
  1989年   10篇
  1988年   13篇
  1987年   7篇
  1986年   10篇
  1985年   5篇
  1984年   1篇
  1983年   4篇
  1980年   1篇
  1978年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
121.
古近纪是现代气候和植被形成的关键过渡期, 而野火活动与气候、植被和碳循环等存在耦合关系。开展古新世-始新世(66~34 Ma)3个特征暖期, 即古新世-始新世极热事件(PETM, 约55.9 Ma)、早始新世气候适宜期(EECO, 53.3~49.1 Ma)、中始新世气候适宜期(MECO, 约40.5~40.1 Ma)的野火活动研究, 对于揭示气候和植被变化特征及其影响具有重要意义。本研究基于蒙古高原南部二连盆地古新世-始新世野火记录, 并结合北半球该时段其他12个地点的野火研究数据, 从长尺度地质记录视角, 重建北半球野火活动特征与演变, 并探讨其驱动机制。研究结果显示古新世-始新世不同特征暖期野火发生规模和强度存在差异, PETM极端暖期较EECO和MECO暖期野火强度更大, 但不十分显著。古新世-始新世暖期并没有持续的、大规模的野火发生, 呈现"低野火状态", 总体不支持强调燃烧活动影响全球碳循环的"野火假说"。通过野火发生与温度、降水、植被以及CO2浓度等环境因子之间的关系分析, 对"古近纪低火谜题"进行初探, 认为古新世-始新世气候的季节性并不分明, 较短的干季不利于可燃"燃料"和潜在火源的形成, 很可能是新生代早期"低野火"的主因。  相似文献   
122.
西藏扎布耶湖ZK91-2钻孔沉积特征与气候环境演化   总被引:12,自引:1,他引:12  
齐文  郑绵平 《湖泊科学》1995,7(2):33-140
扎布耶盐湖位于西藏高原腹地,1991年在其南部干盐滩中钻取了20m深湖相沉积,以5~10cm/个的密度进行高分辨率取样,详细探讨了沉积标志、矿物组合(尤其Mg、Ca、Li碳酸盐)、干旱与潮湿两种气候类型的元素组合等气候环境指标,推导了晚更新世以来该湖区湖面涨缩、水质咸谈及气温高低变化。  相似文献   
123.
ABSTRACT

Water indicators and indices are useful tools to assess river basin performance, that is, to measure whether the basin operates satisfactorily under a wide range of possible future demands and hydrological conditions. Spanish regulations assess the performance of water demands by using reliability indicators (RIs), established by law in 2008. This article raises the possibility of updating RIs by comparing them with sustainability indicators (SIs). SIs are widely used for the assessment of river basin performance and several policy scenarios. We applied a water allocation model to the Guadiana River basin in Spain to compare indicators under three scenarios. The study was framed within the science of socio-hydrology, combining the physical environment of a water system with its influence on social aspects. SIs gave better results than RIs when comparing future scenarios. We also propose the introduction of a vulnerability indicator into Spanish regulations.  相似文献   
124.
ABSTRACT

Based on a future temperature increase of 0.5°C and precipitation decrease of 25%, the climate elasticity of streamflow to precipitation and temperature changes in 12 Andean watersheds of the Coquimbo Region, north-central Chile, was assessed. Also, the possible relationships between this elasticity and specific physiographic characteristics of the watersheds (area, average elevation, slope distribution, terrain roughness, slope orientation, vegetation cover) were studied. Climate elasticity of streamflow ranged between 0 and 2.8. Watersheds presenting higher elevations, with a fairly well-balanced distribution of slope exposure tend to exhibit lower elasticity, which could be explained by the contribution of snowfall to the hydrological regime, more significant in those watersheds. Results should be considered when downscaling climate model projections at the basin scale in mountain settings. Finally, uncertainties in the approach, given by factors such as streamflow seasonality, data availability and representativeness and watershed characteristics, and therefore the scope of the results, are discussed.  相似文献   
125.
Multiple ridges across prograding coasts may display variable geometries, commonly expressed through varying elevations. Changes in ridge elevation have been traditionally related to the occurrence of fluctuating progradation rates, which might, in turn, be driven by shifting environmental conditions. Here, we explore the geometry and growth mechanisms of multiple ridges, generated at Barreta Island (Ria Formosa, southern Portugal), as a consequence of the rapid progradation of the island over the last 70 years, following the artificial fixation of the downdrift Faro-Olhão inlet with jetties in 1955. The variability in the morphology of these features was analysed in combination with available wind and wave data, in order to better distinguish growth mechanisms and understand the main parameters determining the final geometry of the observed ridges. The results suggest that (1) most of the identified ridges fall in the beach ridge classification, as they have been mostly built by marine processes, and (2) the parameters derived from, or closely related to wave climate variability (e.g. progradation rates, storm occurrence) can jointly explain most of the observed morphological changes, while aeolian processes played a secondary role. Indeed, ridge geometry appears mainly controlled by progradation rates, with higher ridges associated with lower progradation rates. Progradation rate, in turn, is mostly related to longshore wave power, storminess, and the occurrence storm groups. Yet, the final configuration of ridges can also be affected by runup levels and onshore winds. Therefore, establishing the relation between ridge geometry and wave climate is not a straightforward task, because of the complex processes and interactions that control coastal morphodynamics. © 2019 John Wiley & Sons, Ltd.  相似文献   
126.
Research in landscape evolution over millions to tens of millions of years slowed considerably in the mid‐20th century, when Davisian and other approaches to geomorphology were replaced by functional, morphometric and ultimately process‐based approaches. Hack's scheme of dynamic equilibrium in landscape evolution was perhaps the major theoretical contribution to long‐term landscape evolution between the 1950s and about 1990, but it essentially ‘looked back’ to Davis for its springboard to a viewpoint contrary to that of Davis, as did less widely known schemes, such as Crickmay's hypothesis of unequal activity. Since about 1990, the field of long‐term landscape evolution has blossomed again, stimulated by the plate tectonics revolution and its re‐forging of the link between tectonics and topography, and by the development of numerical models that explore the links between tectonic processes and surface processes. This numerical modelling of landscape evolution has been built around formulation of bedrock river processes and slope processes, and has mostly focused on high‐elevation passive continental margins and convergent zones; these models now routinely include flexural and denudational isostasy. Major breakthroughs in analytical and geochronological techniques have been of profound relevance to all of the above. Low‐temperature thermochronology, and in particular apatite fission track analysis and (U–Th)/He analysis in apatite, have enabled rates of rock uplift and denudational exhumation from relatively shallow crustal depths (up to about 4 km) to be determined directly from, in effect, rock hand specimens. In a few situations, (U–Th)/He analysis has been used to determine the antiquity of major, long‐wavelength topography. Cosmogenic isotope analysis has enabled the determination of the ‘ages’ of bedrock and sedimentary surfaces, and/or the rates of denudation of these surfaces. These latter advances represent in some ways a ‘holy grail’ in geomorphology in that they enable determination of ‘dates and rates’ of geomorphological processes directly from rock surfaces. The increasing availability of analytical techniques such as cosmogenic isotope analysis should mean that much larger data sets become possible and lead to more sophisticated analyses, such as probability density functions (PDFs) of cosmogenic ages and even of cosmogenic isotope concentrations (CICs). PDFs of isotope concentrations must be a function of catchment area geomorphology (including tectonics) and it is at least theoretically possible to infer aspects of source area geomorphology and geomorphological processes from PDFs of CICs in sediments (‘detrital CICs’). Thus it may be possible to use PDFs of detrital CICs in basin sediments as a tool to infer aspects of the sediments' source area geomorphology and tectonics, complementing the standard sedimentological textural and compositional approaches to such issues. One of the most stimulating of recent conceptual advances has followed the considerations of the relationships between tectonics, climate and surface processes and especially the recognition of the importance of denudational isostasy in driving rock uplift (i.e. in driving tectonics and crustal processes). Attention has been focused very directly on surface processes and on the ways in which they may ‘drive’ rock uplift and thus even influence sub‐surface crustal conditions, such as pressure and temperature. Consequently, the broader geoscience communities are looking to geomorphologists to provide more detailed information on rates and processes of bedrock channel incision, as well as on catchment responses to such bedrock channel processes. More sophisticated numerical models of processes in bedrock channels and on their flanking hillslopes are required. In current numerical models of long‐term evolution of hillslopes and interfluves, for example, the simple dependency on slope of both the fluvial and hillslope components of these models means that a Davisian‐type of landscape evolution characterized by slope lowering is inevitably ‘confirmed’ by the models. In numerical modelling, the next advances will require better parameterized algorithms for hillslope processes, and more sophisticated formulations of bedrock channel incision processes, incorporating, for example, the effects of sediment shielding of the bed. Such increasing sophistication must be matched by careful assessment and testing of model outputs using pre‐established criteria and tests. Confirmation by these more sophisticated Davisian‐type numerical models of slope lowering under conditions of tectonic stability (no active rock uplift), and of constant slope angle and steady‐state landscape under conditions of ongoing rock uplift, will indicate that the Davis and Hack models are not mutually exclusive. A Hack‐type model (or a variant of it, incorporating slope adjustment to rock strength rather than to regolith strength) will apply to active settings where there is sufficient stream power and/or sediment flux for channels to incise at the rate of rock uplift. Post‐orogenic settings of decreased (or zero) active rock uplift would be characterized by a Davisian scheme of declining slope angles and non‐steady‐state (or transient) landscapes. Such post‐orogenic landscapes deserve much more attention than they have received of late, not least because the intriguing questions they pose about the preservation of ancient landscapes were hinted at in passing in the 1960s and have recently re‐surfaced. As we begin to ask again some of the grand questions that lay at the heart of geomorphology in its earliest days, large‐scale geomorphology is on the threshold of another ‘golden’ era to match that of the first half of the 20th century, when cyclical approaches underpinned virtually all geomorphological work. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
127.
This 2‐year study (2000, 2001) reports annual nutrient (phosphorus, nitrate) export from a first‐order agricultural watershed in southern Ontario based on an intensive monitoring programme. The importance of storm and melt events in annual export estimates is demonstrated and the temporal variability in nutrient loading during events is related to processes occurring within the catchment. The feasibility of predicting event‐related nutrient export from hydrometric data is explored. The importance of sampling frequency throughout events is also shown. Export of total phosphorus (TP), soluble reactive phosphorus (SRP) and nitrate ( ) for 2000 and 2001 averaged 0·35 kg ha?1 year?1, 0·09 kg ha?1 year?1, and 35 kg ha?1 year?1 (as N) respectively. Approximately 75% of annual TP export, 80% of annual SRP export and 70% of annual export occurred during 28 events per year. A small number of large‐magnitude events (>34 mm) accounted for 18–42% of annual TP export, 0–61% of annual SRP export and 13–33% of annual NO export. Our results show that temporal variability in nutrient export is largely governed by discharge in this basin, and export can be predicted from discharge. SRP and TP export can also be predicted from discharge, but only for events that are not large in magnitude. The sampling interval throughout events is important in obtaining precise estimates of nutrient export, as infrequent sampling intervals may over‐ or under‐estimate nutrient export by ± 45% per event for P. This study improves our understanding of and P export patterns and our ability to predict or model them by relating temporal variability in event nutrient export to discharge and processes occurring within the basin, and also by exploring the significance of sampling interval in the context of the importance of individual events, season and temporal variability during events. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
128.
The ecosystem services provided by forests modulate runoff generation processes, nutrient cycling and water and energy exchange between soils, vegetation and atmosphere. Increasing atmospheric CO2 affects many linked aspects of forest and catchment function in ways we do not adequately understand. Global levels of atmospheric CO2 will be around 40% higher in 2050 than current levels, yet estimates of how water and solute fluxes in forested catchments will respond to increased CO2 are highly uncertain. The Free Air CO2 Enrichment (FACE) facility of the University of Birmingham's Institute of Forest Research (BIFoR) is the only FACE in mature deciduous forest. The site specializes in fundamental studies of the response of whole ecosystem patches of mature, deciduous, temperate woodland to elevated CO2 (eCO2). Here, we describe a dataset of hydrological parameters – seven weather parameters at each of three heights and four locations, shallow soil moisture and temperature, stream hydrology and CO2 enrichment – retrieved at high frequency from the BIFoR FACE catchment.  相似文献   
129.
Modelling peak accelerations from earthquakes   总被引:1,自引:0,他引:1  
This paper deals with the prediction of peak horizontal accelerations with emphasis on seismic risk and insurance concerns. Non‐linear mixed effects models are used to analyse well‐known earthquake data and the consequences of mis‐specifying assumptions on the error term are quantified. A robust fit of the usual model, using recently developed robust weighted maximum likelihood estimators, is presented. Outlying data are automatically identified and subsequently investigated. A more appropriate model accounting for the extreme value nature of the responses, is also developed and implemented. The implication on acceleration predictions is demonstrated. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
130.
The relative amplitude method(RAM) is more suitable for source inversion of low magnitude earthquakes because it avoids the modeling of short-period waveforms.We introduced an improved relative amplitude method(IRAM) which is more robust in practical cases.The IRAM uses a certain function to quantify the fitness between the observed and the predicted relative amplitudes among direct P wave,surface reflected pP and sP waves for a given focal mechanism.Using the IRAM,we got the fault-plane solutions of two ea...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号