首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   705篇
  免费   133篇
  国内免费   64篇
测绘学   47篇
大气科学   124篇
地球物理   354篇
地质学   119篇
海洋学   1篇
天文学   3篇
综合类   24篇
自然地理   230篇
  2024年   5篇
  2023年   7篇
  2022年   17篇
  2021年   58篇
  2020年   53篇
  2019年   45篇
  2018年   33篇
  2017年   40篇
  2016年   32篇
  2015年   36篇
  2014年   55篇
  2013年   91篇
  2012年   50篇
  2011年   60篇
  2010年   32篇
  2009年   27篇
  2008年   35篇
  2007年   30篇
  2006年   21篇
  2005年   30篇
  2004年   25篇
  2003年   17篇
  2002年   14篇
  2001年   18篇
  2000年   15篇
  1999年   9篇
  1998年   13篇
  1997年   10篇
  1996年   5篇
  1995年   1篇
  1994年   4篇
  1993年   6篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1988年   1篇
  1983年   1篇
排序方式: 共有902条查询结果,搜索用时 15 毫秒
1.
An experiment on evapotranspiration from citrus trees under irrigation with saline waterwas carried out for 4 months. Two lysimeters planted with a citrus tree in the green house wereused. One lysimeter was irrigated with saline water (NaCl and CaCl2 of 2000 mg/L equivalence,EC = 3.8 dS/m, SAR = 5.9) and the other was irrigated with freshwater using drip irrigation. Theapplied irrigation water was 1.2 times that of the evapotranspiration on the previous day.Evapotranspiration was calculated as the change in lysimeter weight recorded every 30 minutes.The lysimeters were filled with soil with 95.8% sand. The results of the experiment were as follows.(i) The evapotranspiration from citrus tree was reduced after irrigation with saline water. Theevapotranspiration returns to normal after leaching. However it takes months to exhaust the saltfrom the tree. ( ii ) To estimate the impact of irrigation with saline water on the evapotranspirationfrom citrus trees, the reduction coefficient due to salt stress (Ks) was used in this experiment.Evapotranspiration under irrigation with saline water (ETs) can be calculated from evapotranspira-tion under irrigation with freshwater (ET) by the equation ETs = Ks× ET. Ks can be expressed as afunction of ECsw. (iii) The critical soil-water electrical conductivity (ECsw) is 9.5 dS/m, beyondwhich adverse effects on evapotranspiration begin to appear. If ECsw can be controlled at below9.5 dS/m, saline water can be safely used for irrigation.  相似文献   
2.
According to the meteorological observation data of 72 stations from 1960 to 2010 in the Huanghe (Yellow) River Watershed, China, the long-term variations of potential evapotranspiration, calculated in the modified Penman-Monteith model of Food and Agriculture Organization of the United Nations, were presented, as well as the meteorological causes for the decrease of potential evapotranspiration were discussed. Since 1960, temperature has risen significantly and potential evapotranspiration a decreasing trend, which indicated the existence of "Evaporation paradox" in the Huanghe River Watershed. This phenomenon was not consistent spatially or temporally with the increase of temperature, potential evapotranspiration decreased in spring, summer and winter, mainly over most parts of Shanxi and Henan, and some parts of Gansu, Ningxia, Inner Mongolia, and Shaanxi. During the recent half century, the trends of temperature and potential evapotranspiration were negatively correlated at most of the stations, while precipitation and potential evapotranspiration exhibited a contrary trend. Calculated in multiple regressions, the contribution to potential evapotranspiration change of related meteorological factors was discussed, including mean pressure, maximum and minimum temperature, sunshine hours, relative humidity and average wind speed. The decrease of wind speed in the Huanghe River Watershed may be the dominating factor causing potential evapotranspiration decreasing.  相似文献   
3.
中国荒漠化气候类型划分与潜在发生范围的确定   总被引:45,自引:6,他引:45  
兹龙骏  吴波 《中国沙漠》1997,17(2):107-111
根据联合国防治荒漠化公约的有关规定,运用Thornthwaite计算可能蒸散量的方法作出了第一张中国荒漠化气候类型分布图,首次确定了中国荒漠化的潜在发生范围。结果表明,中国荒漠化潜在发生范围约3317032.2km2,占国土面积的34.6%,分布于全国18个省(自治区,直辖市),470个县(市、旗)。其中亚湿润干旱区总面积为751161.9km2,占国土面积的7.8%;半干旱区总面积为1139214.2km2,占国土面积的11.9%;干旱区总面积为1426656.1km2,占国土面积的14.9%。  相似文献   
4.
当观测资料的数据量少而又存在多个相互影响或关联的变量时,常用的灰色预测模型GM(1,1)不能全面考虑多个变量。为此,采用自适应MGM(1,n)模型—多变量灰色预测模型,较好地解决了这一问题。针对一些地区气象数据较少甚至缺失的情况,以内蒙古正蓝旗的气象资料用Penman-Monteith计算的参考作物蒸散量(ET0)为研究对象,运用灰色系统理论建立MGM(1,3)模型,模拟预测参考作物蒸散量变化规律,并与GM(1,1)模型和BP神经网络模型比较,结果表明MGM(1,3)模型有较好的预测效果。  相似文献   
5.
近20 a中亚净初级生产力与实际蒸散发特征分析   总被引:3,自引:0,他引:3  
中亚碳、水循环在气候变异和人为活动的影响下呈现新的时空特征。但由于观测数据稀缺,生态过程特殊,植被、土壤空间异质性强,中亚植被净初级生产力(NPP)、实际蒸散发(AET)的时空特征相关信息相对不足,且时效性不高。利用全球尺度的NPP、AET、土地覆被数据,气象站点与区域气候数据分析近20 a中亚地区NPP和AET的时空特征。结果表明:与1990年相比,2000年中亚地区农田NPP增幅小于自然植被,植被总固碳量增加了254.65 Tg C;近20 a中亚地区实际总蒸散量先增后降,农田对中亚水资源散失的贡献减小,自然植被的贡献增大,自然植被与农田面积变化决定中亚总蒸散量动态;北部农田区、东部山区及山前绿洲为NPP和AET的高值区,中西部荒漠为低值区。  相似文献   
6.
利用若尔盖、红原、玛曲3个气象站1971-2010年的地面气象观测资料,根据Penman-Monteith模型计算了若尔盖湿地的潜在蒸散量,发现若尔盖湿地年潜在蒸散量呈明显上升的趋势,上升趋势为9.1 mm/10a;若尔盖湿地潜在蒸散量在2001年出现了增大突变,2001-2010年平均潜在蒸散量比1971-2000年上升了28.6 mm;各季节潜在蒸散量均呈上升趋势,其中以秋季上升最明显,上升趋势为4.3 mm/10a。导致若尔盖湿地潜在蒸散量上升的主要气象因子是温度上升、相对湿度下降和降水量的减少,虽然日照时数减少和风速减小有利于潜在蒸散量的下降,但由于气温上升的趋势更明显,影响更大,所以若尔盖湿地潜在蒸散量呈明显的上升趋势。近40 a若尔盖湿地地表湿润度以-0.03/10a的趋势减小,其中2001-2010年比1981-1990年下降了0.11,下降十分明显;与此同时,年平均气温以0.41℃/10a的趋势上升,降水量以-13.5 mm/10a的趋势减少,虽然若尔盖湿地仍属于湿润区,但出现了明显的暖干化趋势。  相似文献   
7.
黄河流域NDVI/土地利用对蒸散发时空变化的影响   总被引:2,自引:0,他引:2  
基于蒸散发(ET)、归一化植被指数(NDVI)及土地利用数据利用M-K检验、Sen趋势分析等方法,研究2001—2015年黄河流域ET时空分布及不同植被覆盖/土地利用下的ET变化规律.结果 表明:(1)黄河流域年均ET呈东南高西北低的空间分布格局,与植被覆盖和土地利用的关系具有较好的一致性;(2)黄河流域ET、NDVI...  相似文献   
8.
Droughts have become widespread in the Northern Hemisphere, including in China, where they have affected farmland resources on the Loess Plateau. Given this background, we proposed a new index, the Normalized Day-Night Surface Temperature Index (NTDI), to estimate moisture availability (ma), defined as the ratio of actual to reference evapotranspiration. The NTDI is defined as the ratio of the difference between the maximum daytime surface temperature and the minimum nighttime surface temperature, to the difference between the maximum and minimum surface temperatures estimated from meteorological data by applying energy balance equations.To calculate the index, we used data of 20 clear-sky meteorological observations made during the 2005 growing season at a natural grassland station in the Liudaogou River basin on the Loess Plateau. The NTDI showed a significant inverse exponential correlation with ma (R2 = 0.97, p < 0.001), whereas the numerator of the index (the maximum daytime surface temperature minus the minimum nighttime surface temperature) was only weakly correlated with ma (R2 = 0.24, p = 0.03). This result indicates that normalization relative to the index denominator (maximum surface temperature − minimum surface temperature) dramatically improved the accuracy of the estimate.  相似文献   
9.
为探明气候变化下干旱半干旱地区湿草甸参考作物蒸散发(ET0)影响因子,使用FAO 56 P-M模型对科尔沁湿草甸ET0进行模拟,利用涡度相关系统对模型的适用性进行评价,并通过通径分析及指标敏感性分析对ET0的影响因子进行辨识。结果表明:(1)小时尺度模拟精度最高,日尺度次之,月尺度较差,小时尺度上晴、阴、雨3种天气条件下模拟效果不同,晴天最优,阴雨天较差。(2)ET0年内变化呈单峰曲线状,生长季明显高于非生长季,集中在3—10月,占全年89.79%。生长季典型晴天ET0逐小时分布特征遵循倒“U”单峰型变化规律。(3)通径分析结果显示,对ET0的通径系数以及对回归方程估测可靠程度E的总贡献均表现为VPD(饱和水汽压差) > Tmin(最低气温) > Rn(冠层表面净辐射)>u2(2 m高度风速),即VPD为影响ET0最重要的因子;指标敏感性分析中,在去除VPD后引起的E变化最大,说明ET0VPD的变化最为敏感,其次为u2TminRn。  相似文献   
10.
利用Lysimeter蒸散仪于2011-2014年对祁连山中部黑河上游天涝池流域亚高山草地实际蒸散量进行观测。用FAO Penman-Monteith模型对草地参考蒸散量进行估算,根据草地植被高度结合气象数据,以估算日尺度作物系数,以估算的作物系数与模拟的参考蒸散量计算草地实际蒸散量,并用观测值进行验证。结果表明:FAO改进后的作物系数计算方法适合该区域草地作物系数的计算;以FAO Penman-Monteith模型估算的日蒸散量为0.50~7.26 mm,生长季日均蒸散量有年际变化,2011年 > 2014年 > 2012年 > 2013年。总体来看,土壤蒸发总量年际变化不大,影响蒸散量年际变化的主要部分是植被的蒸腾。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号