首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5377篇
  免费   1001篇
  国内免费   1876篇
测绘学   247篇
大气科学   180篇
地球物理   1528篇
地质学   4943篇
海洋学   702篇
天文学   45篇
综合类   263篇
自然地理   346篇
  2024年   34篇
  2023年   104篇
  2022年   166篇
  2021年   194篇
  2020年   228篇
  2019年   291篇
  2018年   230篇
  2017年   249篇
  2016年   281篇
  2015年   289篇
  2014年   360篇
  2013年   310篇
  2012年   331篇
  2011年   365篇
  2010年   311篇
  2009年   386篇
  2008年   392篇
  2007年   418篇
  2006年   444篇
  2005年   324篇
  2004年   341篇
  2003年   276篇
  2002年   243篇
  2001年   233篇
  2000年   198篇
  1999年   198篇
  1998年   177篇
  1997年   166篇
  1996年   132篇
  1995年   112篇
  1994年   116篇
  1993年   76篇
  1992年   78篇
  1991年   44篇
  1990年   38篇
  1989年   36篇
  1988年   32篇
  1987年   23篇
  1986年   2篇
  1985年   5篇
  1984年   6篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1977年   2篇
  1954年   5篇
排序方式: 共有8254条查询结果,搜索用时 0 毫秒
61.
The 2nd Member of Kongdian Formation has been made up of a large number of oil shale and mudstone in the Kongnan aera of Huanghua depression around the Bohai Bay. In the Kongnan area, the lake basins were very large and deep during the deposition of the 2nd Member of Kongdian Formation. During that period,the lakes were sealed, uncommunieated with the sea water and the paleoclimate was very warm and wet in Kongnan area. Analyzing the content of the trace element and the rare earth element, carbon and oxygen isotope in the disquisition, The authors prove the two views correct.  相似文献   
62.
杨顶辉 《地球物理学报》2002,45(04):575-583
基于双相各向异性介质模型,首先推导了双相各向异性介质中弹性波传播的动力学方程及其Galerkin变分方程和有限元运动方程,然后给出了孔隙弹性波方程的有限元数值解法以及二维双相PTL介质中波场模拟的人为吸收边界条件. 最后,利用本文给出的有限元方法对双相PTL介质和双相各向同性介质中的弹性波传播进行了数值模拟. 结果表明:有限元方法和吸收边界条件有效、可行,在理想相界条件下,不论是从固体位移,还是从流体位移的波场快照都能看到明显的慢速拟P波;在黏滞相界情况下,能否观察到慢速拟P波,与含流体地层介质的耗散性质有关.对实际含流体介质,从流体位移分量的波场快照比从固体位移波场快照更容易观察到慢速拟P波.  相似文献   
63.
云南白秧坪银多金属矿床微量元素地球化学特征   总被引:1,自引:0,他引:1       下载免费PDF全文
云南白秧坪银多金属矿床是滇西兰坪盆地内新发现的矿床,属东特提斯喜马拉雅成矿域的一部分。矿床主要产于下白垩统景星组石英砂岩、粉砂岩中。本文从微量元素地球化学研究入手,与滇西喜马拉雅期富碱岩体相比较,它们具有相同的物质来源区,这种源区被认为是壳幔物质混合的一种"EMⅡ型"富集地幔源。  相似文献   
64.
This paper presents a single‐domain boundary element method (BEM) for linear elastic fracture mechanics analysis in the two‐dimensional anisotropic material. In this formulation, the displacement integral equation is collocated on the un‐cracked boundary only, and the traction integral equation is collocated on one side of the crack surface only. A special crack‐tip element was introduced to capture exactly the crack‐tip behavior. A computer program with the FORTRAN language has been developed to effectively calculate the stress intensity factors of an anisotropic material. This BEM program has been verified having a good accuracy with the previous researches. Furthermore, by analyzing the different anisotropic degree cracks in a finite plate, we found that the stress intensity factors of crack tips had apparent influence by the geometry forms of cracks and media with different anisotropic degrees. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
65.
Interest in the mechanics of landslides has led to renewed evaluation of the infinite slope equations, and the need for a more general framework for estimating the factor of safety of long and infinite slopes involving non‐homogeneous soil profiles. The paper describes finite element methods that demonstrate the potential for predicting failure in long slope profiles where the critical mechanism is not necessarily at the base of the soil layer. The influence of slope angle is also examined in long slopes, leading to some counter‐intuitive conclusions about the impact of slope steepness on the factor of safety. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
66.
In recent years, pile jacking has become a viable alternative installation method for displacement piles. Pile jacking produces minimal noise, vibration and air pollution during installation. In addition, it is possible, at the end of jacking, to have a good estimate of the ultimate static capacity of the pile. In this paper, the shaft resistance of piles jacked into sand is studied using one‐dimensional finite element analysis. The finite element simulations, using a two‐surface plasticity model, demonstrate the effects of relative density and confinement on the unit shaft resistance of piles jacked in sand. The impact of the number of jacking strokes on the unit shaft capacity is also assessed. Based on the numerical results, we developed equations for shaft resistance quantifying the effects of relative density, initial confinement and number of jacking strokes. Predictions using these equations are compared with data obtained from centrifuge tests and field tests. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
67.
The present paper focuses on selected plasticity and damage‐plasticity models for describing the 3D material behavior of concrete. In particular, a plasticity model and a damage‐plasticity model are reviewed and evaluated. Based on the results of the evaluation, enhancements are proposed, aiming at improving the correspondence between predicted and observed material behavior and aiming at implementing a robust and efficient stress update algorithm in a finite element program for performing large‐scale 3D numerical simulations of concrete structures. The capabilities of the concrete models are demonstrated by 3D numerical simulations of benchmark tests with combined bending and torsional loading and combined compression and shear loading and by a large‐scale 3D finite element analysis of a model test of a concrete arch dam. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
68.
The Early Cretaceous (∼135–131 Ma) Paraná-Etendeka continental flood basalts, preserved in bulk in the Paraná basin of southern Brazil and vicinity, have been divided into low-Ti and high-Ti types that govern the southern and northern halves of the basin, respectively. We have examined a new sample set from the southern margin of the northern high-Ti segment of Paraná basalts in Misiones, northeastern Argentina. These basalts are strongly to moderately enriched in TiO2 (2–4 wt.%), have relatively high Ti/Y (300–500), low MgO (3.5–6.5 wt.%), and high Fe (FeO(tot) 12–14 wt.%) and belong to the Pitanga and Paranapanema magma types of Peate et al. (1992). Nd and Sr isotope compositions are quite unvarying with εNd (at 133 Ma) values of −4.6 to −3.6 and initial 87Sr/86Sr of 0.7054–0.7059 and show no variation with fractionation. Compared to high-Ti lavas in the central and northern parts of the Paraná high-Ti basalt segment, the lavas from Misiones are similar to those in the northeastern magin of the basin but less radiogenic in initial Nd isotope composition than those in the central part. This variation probably reflects mixed EM1-EM2 source components in the sublithospheric mantle. A polybaric melt model of a sublithospheric mantle source at the garnet lherzolite-spinel lherzolite transition is compatible with the observed Ti budget of the Pitanga and Paranapanema lavas, regardless of the Nd isotope composition of their purported source.  相似文献   
69.
This article presents the settlement of drilled shafts resulting from their structural deformations. Although drilled shafts are widely used as foundations for settlement-sensitive structures such as bridges and high-rise buildings, the structural deformations of drilled shafts are not typically taken into account in the design process. However, if unexpected structural deformations of drilled shafts cause additional settlement to the foundation, the serviceability of the superstructure can be jeopardized. Unfortunately, very few research efforts have been made to quantify the structural deformation of drilled shafts; this needs to be addressed to accurately predict the settlement of drilled shafts. In this study, we investigate the effect of structural deformation on displacement of axially loaded drilled shafts. Finite element analyses were performed to quantify the structural deformation of drilled shafts. The analysis results indicated that the structural deformation of drilled shafts could be quite significant for long drilled shafts. The main factors that affected the structural deformation of drilled shafts were found to be pile length, the material properties of drilled shafts, and the relative humidity of surrounding soil. An approximate equation is proposed to estimate the long-term deformation of drilled shafts.  相似文献   
70.
《China Geology》2018,1(3):367-373
There are many factors affecting the instability of the submarine hydrate-bearing slope (SHBS), and the interaction with hydrate is very complicated. In this paper, the mechanical mechanism of the static liquefaction and instability of submarine slope caused by the dissociation of natural gas hydrate (NGH) resulting in the rapid increase of pore pressure of gas hydrate-bearing sediments (GHBS) and the decrease of effective stress are analyzed based on the time series and type of SHBS. Then, taking the typical submarine slope in the northern South China Sea as an example, four important factors affecting the stability of SHBS are selected, such as the degree of hydrate dissociation, the depth of hydrate burial, the thickness of hydrate, and the depth of seawater. According to the principle of orthogonal method, 25 orthogonal test schemes with 4 factors and 5 levels are designed and the safety factors of submarine slope stability of each scheme are calculated by using the strength reduction finite element method. By means of the orthogonal design range analysis and the variance analysis, sensitivity of influential factors on stability of SHBS are obtained. The results show that the degree of hydrate dissociation is the most sensitive, followed by hydrate burial depth, the thickness of hydrate and the depth of seawater. Finally, the concept of gas hydrate critical burial depth is put forward according to the influence law of gas hydrate burial depth, and the numerical simulation for specific submarine slope is carried out, which indicates the existence of critical burial depth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号