首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   497篇
  免费   48篇
  国内免费   22篇
测绘学   3篇
大气科学   9篇
地球物理   141篇
地质学   131篇
海洋学   34篇
天文学   2篇
综合类   5篇
自然地理   242篇
  2024年   3篇
  2023年   5篇
  2022年   10篇
  2021年   18篇
  2020年   20篇
  2019年   23篇
  2018年   26篇
  2017年   12篇
  2016年   22篇
  2015年   16篇
  2014年   20篇
  2013年   42篇
  2012年   26篇
  2011年   31篇
  2010年   21篇
  2009年   32篇
  2008年   30篇
  2007年   24篇
  2006年   25篇
  2005年   18篇
  2004年   17篇
  2003年   17篇
  2002年   12篇
  2001年   13篇
  2000年   11篇
  1999年   11篇
  1998年   9篇
  1997年   14篇
  1996年   8篇
  1995年   5篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有567条查询结果,搜索用时 31 毫秒
121.
金字塔沙丘近地表流场及其对月牙泉影响研究   总被引:1,自引:0,他引:1  
对月牙泉景区气象站点资料和积沙量统计分析以及月牙泉北侧金字塔沙丘近地表流场野外观测表明:受地形影响,月牙泉景区和金字塔沙丘各点起沙风玫瑰和输沙势玫瑰在监测期内差别较大。在金字塔沙丘影响下,不同风向下气流发生多次分离和汇集,沙丘近地表气流发生明显变化,携沙气流行进方向发生改变。金字塔沙丘坡面上各点合成输沙势和起沙风与坡面走向呈垂直角度,气流沿坡面爬越沙丘时,动能发生损耗,携沙能力减弱,减少了进入月牙泉的风沙量,减弱了月牙泉的风沙灾害。  相似文献   
122.
The recovery of Santa Rosa Island in northwest Florida is characterized following Hurricane Katrina (September 2005), which was preceded by Hurricanes Ivan (2004) and Dennis (2005). Beach and dune recovery were quantified to the east and west of Pensacola Beach through a comparison of LiDAR data collected immediately following Hurricane Katrina and in July 2006 after almost a year of recovery. East of Pensacola Beach (the Santa Rosa Unit), the shoreline retreated by an average of 64 m during the 2004–2005 hurricane season and recovered by an average of 19 m. To the west of Pensacola Beach (the Fort Pickens Unit), the shoreline retreated by an average of 30 m, and while no significant shoreface recovery was observed, the presence of vegetation on low‐profile dunes promoted backshore accretion. It is found that beachface recovery in the Santa Rosa Unit and backshore accretion in the Fort Pickens Unit occurred at the widest sections of the island where the pre‐storm profile volume had been relatively large and overwash penetration was at a minimum. The narrow sections of the island (between cuspate headlands) had a smaller profile volume before the storms, leading to greater overwash penetration and in some cases island breaching in both sections, which limited the volume of sediment available for shoreface recovery. The alongshore variation in recovery is not only related to the island width, but also the offshore bathymetry, height of the pre‐storm dunes and the overwash penetration. If sufficient time is allowed for the return of vegetation and the recovery of the dunes, the variations in storm impact observed during Hurricane Ivan will be reinforced during subsequent storms. In this respect, the level of impact during subsequent storms and the ability of the island to recover will depend on the frequency of storm events. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
123.
Longitudinal dunes are the most widespread dune types in the world sand seas but comprehensive study on the sand surface stability is scarce. The southern part of Gürbantünggüt Desert is mainly covered by longitudinal dune in which fixed and semi-fixed dunes occupy over 80% of the total area. Systematic analysis on the climatic conditions, the soil moisture and vegetation distributions, and the sand surface activities showed that the fixed and semi-fixed dunes are in a comprehensive low-energy wind environment. Snow cover and frozen soil provide a good protection to the ground surface in winter. The temporal distribution of precipitation and corresponding variation of temperature create a favorable condition for the desert plants growth, especially for the ephemeral plants. The occurrence of effective winds for sand moving in April to June coincides with the stage of relatively wet sand surface and good vegetation cover, which effectively keep the sand surface stable at the interdune and the plinth of the dunes. Activity sand surface appears only at the crest and the upper part of the sand dunes.  相似文献   
124.
Field‐measured patterns of mean velocity and turbulent airflow are reported for isolated barchan dunes. Turbulence was sampled using a high frequency sonic anemometer, deriving near‐surface Reynolds shear and normal stresses. Measurements upwind of and over a crest‐brink separated barchan indicated that shear stress was sustained despite a velocity reduction at the dune toe. The mapped streamline angles and enhanced turbulent intensities suggest the effects of positive streamline curvature are responsible for this maintenance of shear stress. This field evidence supports an existing model for dune morphodynamics based on wind tunnel turbulence measurements. Downwind, the effect of different dune profiles on flow re‐attachment and recovery was apparent. With transverse incident flow, a re‐attachment length between 2·3 and 5·0h (h is dune brink height) existed for a crest‐brink separated dune and 6·5 to 8·6h for a crest‐brink coincident dune. The lee side shear layer produced elevated turbulent stresses immediately downwind of both dunes, and a decrease in turbulence with distance characterized flow recovery. Recovery of mean velocity for the crest‐brink separated dune occurred over a distance 6·5h shorter than the crest‐brink coincident form. As the application of sonic anemometers in aeolian geomorphology is relatively new, there is debate concerning the suitability of processing their data in relation to dune surface and streamline angle. This paper demonstrates the effect on Reynolds stresses of mathematically correcting data to the local streamline over varying dune slope. Where the streamline angle was closely related to the surface (windward slope), time‐averaged shear stress agreed best with previous wind tunnel findings when data were rotated along streamlines. In the close lee, however, the angle of downwardly projected (separated) flow was not aligned with the flat ground surface. Here, shear stress appeared to be underestimated by streamline correction, and corrected shear stress values were less than half of those uncorrected. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
125.
Pebble clusters are reported widely as characteristic of gravel river beds and are known to influence the initial entrainment of bedload. A field assessment suggests that their distribution is not ubiquitous, favouring channel bars, but also reveals a tendency towards a preferred stream wise spacing. A series of laboratory flume experiments shows that flow resistance rises to, and falls from, a peak value as the longitudinal spacing of pebble clusters decreases, in a manner similar to that shown by others for strip roughness, isolated blocks, and simulated ripples and dunes. The experiments also reveal a strong inverse relationship between bedload flux rates and the flow resistance induced by the concentration of pebble clusters. It is concluded that pebble cluster spacing tends towards an equilibrium that is regulated by a feedback process involving sediment transport rates and that the spatial concentration of these microforms will adjust to the point where they induce maximum flow resistance.  相似文献   
126.
Microbiotic crusts play an important role in arid and semi‐arid regions. Yet, very little information exists regarding the factors that impact their development. In an attempt to assess the main factors that may determine their growth, measurements of the amount of fines (silt and clay), rain, moisture content, wetness duration and wind erosion and deposition were carried out along a 12 station transect within a partially crusted dune field in the western Negev Desert and compared to the crust cover and chlorophyll content. Surface stability was the only variable that exhibited significant relationship with crust cover while daylight wetness duration exhibited strong positive relationship (r2 = 0·92–0·99) with the crust's chlorophyll content. The data point out that microbiotic crusts may serve as a useful biomarker for surface stability. While wetness duration and wind will control crust cover and the crust chlorophyll content in semi‐stable habitats (with absolute annual change in sand level of 2–3 mm), stable habitats (absolute change <1 mm) will be controlled primarily by moisture, while habitats with low surface stability (absolute change of tens and hundreds of millimeters) will be primarily controlled by wind. Furthermore, owing to the strong positive relationship between daylight wetness duration and the crust's chlorophyll content, the crust may serve as a useful biomarker for the quantification of surface wetness duration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
127.
Coastal dunes are dynamic features that are continuously evolving due to constructive (e.g., wind- and wave-driven sediment transport) and destructive (e.g., elevated total water levels during storm events) processes. However, the relative importance of these processes in determining dune evolution is often poorly understood. In this study, ten lidar datasets from 1997 to 2016 are used to determine the relative role of erosion and accretion processes driving foredune change on the coast of Cape Lookout National Seashore, North Carolina, USA. Beach and dune morphometrics reveal that dune toe locations have generally retreated since 1997, while dune crest heights accreted by 0.01–0.02 m/year. We develop three univariate metrics that represent (1) the potential for erosion, i.e., total water level impact hours per year, (2) accretion, i.e., dune building hours per year, and (3) the relative net effect of foredune accretion and erosion processes, i.e., constructive–destructive dune forcing (CDDF) ratio, and test the correlative power of these metrics in explaining changes in foredune morphology. The total water level impact hours per year metric explained as much as 66% and 67% of the variance in dune crest and toe elevations, respectively, across the nearly two decades of dune evolution. The greatest number of dune building hours per year and largest dunes within the study site co-occurred at locations exposed to the dominant cross-shore wind direction as a result of varying shoreline orientation. The CDDF ratio was positively correlated to changes in the dune toe elevation in approximately 70% of dunes within the study site, outperforming the impact and dune building hours per year metrics. Our results show that these three metrics can provide first-order estimates of dune morphometric change across multiple spatial and temporal scales, which may be particularly useful at sites where lidar acquisition is intermittent.  相似文献   
128.
《Sedimentology》2018,65(3):639-669
Active margin continental slope outcrops from the Eocene Juncal Formation, the Eocene La Jolla Group and the Miocene Capistrano Formation display sedimentary structures and depositional geometries that suggest deposition from Froude supercritical flow, based on comparison to strata produced by flume experiments. These deposits range from boulder‐size soft clasts and cobble‐size hard clasts to silt and mud, and display long‐wavelength and low‐amplitude convex‐up and concave‐up geometries that range from centimetre to hundreds of metres scale, low‐angle foresets and backsets, and common internal and bounding erosion surfaces from centimetres to tens of metres in depth. In places, planar laminations, structureless beds and normally graded beds are laterally or vertically associated with such structures. In other places, consistent backsets or deep and steep‐sided scours occur. This study aimed to discuss the origin of the observed bedforms, contributed to recognition of supercritical flow deposits on continental slopes and expanded the outcrop examples of supercritical flow deposits to silt and mud. This work implies that the erosive and powerful Froude supercritical flow turbidity currents may have a substantial impact on erosional and depositional dynamics on deepwater slopes, especially on active margins due to the steep gradients and high sediment supply.  相似文献   
129.
Historically, management of coastal dune systems has often involved artificial stabilization of active sand surfaces in order for coastal areas to be more easily controlled and modified for human benefit. In North America, the introduction of invasive grasses, namely European and American beach (marram) grasses (Ammophila spp.) has been one of the most successful strategies used for stabilizing active coastal dune sands. Recent research has demonstrated, however, that stabilization of coastal dunes often leads to reduced landform complexity and resilience, as well as declines in species diversity. More ‘dynamic’ restoration efforts have emerged over the past 20 years that encourage dune mobility and aeolian activity in order to provide a more resilient biogeomorphic system. In North America, there is generally little research relating restoration methods and outcomes to geomorphic responses despite the fundamental importance of sedimentary processes and dune morphodynamics in broader ecosystem function. This paper aims to better situate dynamic dune restoration within current geomorphic understanding. A brief review of key terms and concepts used in the emerging field of dynamic dune restoration is provided and expanded upon with respect to geomorphologic considerations. A case study of a recent dynamic restoration effort in Pacific Rim National Park Reserve, British Columbia, Canada is provide to demonstrate how these concepts are applied. Introduction of European marram at this site, coupled with a warming climate and increased precipitation in recent decades at this site, is thought to be associated with a rapid decline in aeolian activity, system stabilization and accelerated ecological succession. Preliminary results on the response of the dune system to mechanical removal of Ammophila are presented to provide the foundation for a research framework to guide the broader restoration project. Recommendations for improving treatment methodologies and monitoring protocols are provided to aid future restoration projects of this nature. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
130.
ABSTRACT

The hydrological response of shallow ponds to groundwater withdrawal has been of growing concern in the Doñana National Park (southern Spain) in recent decades. This study examines the role of groundwater in maintaining the hydroperiod (i.e. the hydrological regime) in the park’s main dune ponds, by quantifying the groundwater fluxes to/from them. The hydrological characterization was performed by applying different methodologies. Daily hydrological balances registered in the ponds revealed groundwater contributions ranging from 80% of the total water inflows (i.e. groundwater discharge) to a net groundwater recharge from the ponds to the aquifer, and enabled the studied water bodies to be classified as discharge or recharge systems. The recharge systems must have been influenced by the lowering of piezometric levels due to groundwater extraction for urban supply in a nearby coastal resort.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号