首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27543篇
  免费   5568篇
  国内免费   6463篇
测绘学   1961篇
大气科学   2529篇
地球物理   6123篇
地质学   18222篇
海洋学   3765篇
天文学   73篇
综合类   2231篇
自然地理   4670篇
  2024年   160篇
  2023年   397篇
  2022年   910篇
  2021年   1275篇
  2020年   1212篇
  2019年   1514篇
  2018年   1190篇
  2017年   1314篇
  2016年   1317篇
  2015年   1437篇
  2014年   1817篇
  2013年   1987篇
  2012年   1837篇
  2011年   1959篇
  2010年   1717篇
  2009年   1726篇
  2008年   1804篇
  2007年   1839篇
  2006年   1917篇
  2005年   1581篇
  2004年   1494篇
  2003年   1261篇
  2002年   1127篇
  2001年   1047篇
  2000年   892篇
  1999年   784篇
  1998年   700篇
  1997年   613篇
  1996年   509篇
  1995年   450篇
  1994年   402篇
  1993年   324篇
  1992年   272篇
  1991年   177篇
  1990年   123篇
  1989年   126篇
  1988年   95篇
  1987年   66篇
  1986年   44篇
  1985年   46篇
  1984年   34篇
  1983年   17篇
  1982年   6篇
  1981年   11篇
  1980年   9篇
  1979年   8篇
  1978年   11篇
  1973年   4篇
  1971年   3篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
云南沿边境地带生态环境3S监测、 评价与调控研究   总被引:8,自引:0,他引:8  
本文利用全球新千年整体生态系统评估的理论,以云南省沿边境地带生态系统变化跨境生态安全为研究对象,探寻并揭示我国陆疆系统的跨境生态系统变化监测、评价和生态安全综合调控的基础理论与信息机理;进而研究基于“3S”云南沿边境地带的生态环境监测、评价与综合调控的方法和关键技术,包括方法和技术体系的建立、指标体系的建立、多尺度效应和尺度转换、数学模型的建立、综合调控模式和决策方案的建立等;在案例研究部分,建立了背景数据库,然后选择大、中、小尺度进行了全区生态环境现状评价,重点河道、典型路段和重点口岸的影响评价和预测预报研究,最后进行了综合调控模式和方案的探讨,并对研究结果进行了动态仿真和虚拟表达研究。  相似文献   
972.
从土地利用转移类型、空间格局变化定量分析、动态变化预测模型等方面分析近20年都安土地利用变化,进而对其生态环境质量变化进行定量分析,得出结论:都安各乡(镇)生态环境质量改善与恶化在很大程度取决于裸岩地扩展与收缩,土地利用时空变化与区域生态环境质量的区域差异有很大相关性。  相似文献   
973.
在剖析生态足迹分析法的理论基础上,进一步考虑不同消费水平对生态足迹时空变异的影响,划分农村居民和城镇居民两类不同的消费群体,分别计算各自的生态足迹,其次进一步细化模型中人均水资源足迹,从而构建生态足迹与生态容量平衡模型。根据平衡模型计算出生态盈亏,得出区域生态持续性评价结果。并以1999年北京西部山区门头沟区为例,进行模型计算和生态可持续评价,结果表明1999年门头沟区处于生态赤字状态,说明该区生态系统处于不可持续状态。在对门头沟区的初步研究基础上,指出生态足迹作为山区生态可持续评价指标的优点及当前存在的缺点。  相似文献   
974.
针对目前城市供水价格计算与计量方式不合理和突出的水资源供需矛盾,提出了按全成本水价模式测算广东省城市供水价格,并采用阶梯水价、两部制水价和季节水价计量方式逐步达到全成本水价的措施与实施步骤,确保水资源的持续利用支撑广东省经济社会的可持续发展.  相似文献   
975.
Oil sands mining in Alberta transforms the boreal landscape of forests and wetlands into open pits, tailings ponds and overburden piles. Whereas reclamation efforts have primarily focused on upland forests, rebuilding wetland systems has recently become a motivation for research. Wetland creation and sustainability in this region is complicated by the sub‐humid climate and salinity of underlying mining material. In 2012, Syncrude Canada Ltd. completed the construction of the Sandhill Fen Watershed (SFW), a 52‐ha upland‐wetland system to evaluate wetland reclamation strategies on soft tailings. SFW includes an active pumping system, upland hummocks, a fen wetland and underdrains. To evaluate the influence of management practices on the hydrology of the system, this study reports the water balance from January 2013 to December 2014, the first 2 years after commissioning. A semi‐distributed approach was taken to examine the fluxes and stores of water in uplands and lowlands. Natural and artificial inputs and outputs were measured using a series of precipitation gauges and pumps, and evapotranspiration was quantified using three eddy covariance towers. A series of near surface wells recorded water table position. Both 2013 and 2014 were normal rainfall years, with 2013 having more and 2014 less snow than normal. In 2013, inflow/outflow from pumping was the predominant hydrological fluxes, resulting in considerable variability in water table position and storage changes throughout the summer. In 2014, the artificial addition of water was negligible, yet the water table remained near the surface in lowland locations, suggesting that wetland conditions could be maintained under current conditions. Evapotranspiration rates between uplands and lowlands were similar between years and sites, ranging from 2.2 ± 1.8 to 2.5 ± 1.2 mm/day and were largely controlled by climate. These rates were less than nearby older upland systems, suggesting that water balance partitioning will change as vegetation develops. Comparison between years and with natural systems provides insight on how management practices influence hydrologic dynamics and the overall water balance of the SFW. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
976.
This paper presents an alternative Boussinesq equation considering hysteresis effect via a third‐order derivative term. By introducing an improved moisture–pressure retention function, this equation describes, with reasonable precision, groundwater propagation in coastal aquifers subject to Dirichlet boundary condition of different oscillation frequencies. Test results confirmed that it is necessary to consider horizontal and vertical flows in unsaturated zone, because of their variable influences on hysteresis. Hysteresis in unsaturated zone can affect the water table wave number of groundwater wave motion, such as wave damping rate and phase lag. Oscillations with different periods exert different hysteresis effect on wave propagation. Truncation/shrinkage of unsaturated zones also affects the strength of hysteresis. These impacts can be reflected in the alternative Boussinesq equation by adjusting the parameter representing the variation rate of moisture associated with pressure change, as opposed to traditional computationally expensive hysteresis algorithms. The present Boussinesq equation is simple to use and can provide feasible basis for future coupling of groundwater and surface water models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
977.
We propose a new runoff model including an outflow process that was applied to two adjacent basins (CL, TL) located in Lambir Hills National Park in north‐central Sarawak, Malaysia. Rainfall, runoff, topography, and soil layer thickness were observed. About 19% of annual runoff was observed in the CL basin (21.97 ha), whereas about 46% was observed in the TL basin (23.25 ha). It was inferred that the CL basin has an outflow because of low base flow, small runoff peak, and excessive water loss. By incorporating the outflow process into the HYdrological CYcle MODEL, good agreement between the data generated by the model and that observed was shown, with the exception of the data from the rainless period. Then, the fitting parameters for each basin were exchanged, except for the outflow parameter, and the characteristics of each basin were compared by calculating virtual runoff. As a result, the low base flow of the CL basin was estimated by the movement of the rainwater that escaped from the basin as deep percolation or lateral flow (11% of rainfall). The potential of the CL basin for mitigating flood and drought appeared to be higher than that of the TL basin. This is consistent with the topographic characteristics of the CL basin, which has a gentler slope than the TL basin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
978.
Current land-use classifications used to assess urbanization effects on stream water quality date back to the 1980s when limited information was available to characterize watershed attributes that mediate non-point source pollution. With high resolution remote sensing and widely used GIS tools, there has been a vast increase in the availability and precision of geospatial data of built environments. In this study, we leverage geospatial data to expand the characterization of developed landscapes and create a typology that allows us to better understand the impact of complex developed landscapes across the rural to urban gradient. We assess the ability of the developed landscape typology to reveal patterns in stream water chemistry previously undetected by traditional land-cover based classification. We examine the distribution of land-cover, infrastructure, topography and geology across 3876 National Hydrography Dataset Plus catchments in the Piedmont region of North Carolina, USA. From this dataset, we generate metrics to evaluate the abundance, density and position of landscape features relative to streams, catchment outlets and topographic wetness metrics. While impervious surfaces are a key distinguishing feature of the urban landscape, sanitary infrastructure, population density and geology are better predictors of baseflow stream water chemistry. Unsupervised clustering was used to generate a distinct developed landscape typology based on the expanded, high-resolution landscape feature information. Using stream chemistry data from 37 developed headwater catchments, we compared the baseflow water chemistry grouped by traditional land-cover based classes of urbanization (rural, low, medium and high density) to our composition and structure-based classification (a nine-class typology). The typology based on 22 metrics of developed landscape composition and structure explained over 50% of the variation in NO3-N, TDN, DOC, Cl, and Br concentration, while the ISC-based classification only significantly explained 23% of the variation in TDN. These results demonstrate the importance of infrastructure, population and geology in defining developed landscapes and improving discrete classes for water management.  相似文献   
979.
980.
Spatial information on soil properties is an important input to hydrological models. In current hydrological modelling practices, soil property information is often derived from soil category maps by the linking method in which a representative soil property value is linked to each soil polygon. Limited by the area‐class nature of soil category maps, the derived soil property variation is discontinuous and less detailed than high resolution digital terrain or remote sensing data. This research proposed dmSoil, a data‐mining‐based approach to derive continuous and spatially detailed soil property information from soil category maps. First, the soil–environment relationships are extracted through data mining of a soil map. The similarity of the soil at each location to different soil types in the soil map is then estimated using the mined relationships. Prediction of soil property values at each location is made by combining the similarities of the soil at that location to different soil types and the representative soil property values of these soil types. The new approach was applied in the Raffelson Watershed and Pleasant Valley in the Driftless Area of Wisconsin, United States to map soil A horizon texture (in both areas) and depth to soil C horizon (in Pleasant Valley). The property maps from the dmSoil approach capture the spatial gradation and details of soil properties better than those from the linking method. The new approach also shows consistent accuracy improvement at validation points. In addition to the improved performances, the inputs for the dmSoil approach are easy to prepare, and the approach itself is simple to deploy. It provides an effective way to derive better soil property information from soil category maps for hydrological modelling. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号