首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4094篇
  免费   372篇
  国内免费   190篇
测绘学   292篇
大气科学   258篇
地球物理   1745篇
地质学   1243篇
海洋学   364篇
天文学   33篇
综合类   84篇
自然地理   637篇
  2024年   20篇
  2023年   28篇
  2022年   45篇
  2021年   90篇
  2020年   183篇
  2019年   145篇
  2018年   131篇
  2017年   195篇
  2016年   179篇
  2015年   157篇
  2014年   178篇
  2013年   405篇
  2012年   115篇
  2011年   145篇
  2010年   130篇
  2009年   179篇
  2008年   264篇
  2007年   253篇
  2006年   242篇
  2005年   212篇
  2004年   184篇
  2003年   138篇
  2002年   113篇
  2001年   98篇
  2000年   115篇
  1999年   109篇
  1998年   98篇
  1997年   99篇
  1996年   70篇
  1995年   69篇
  1994年   53篇
  1993年   55篇
  1992年   33篇
  1991年   25篇
  1990年   23篇
  1989年   21篇
  1988年   21篇
  1987年   8篇
  1986年   12篇
  1985年   4篇
  1984年   2篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1954年   2篇
排序方式: 共有4656条查询结果,搜索用时 0 毫秒
51.
The ability to model and predict the formation of desiccation cracks is potentially beneficial in many applications such as clay liner design, earth dam construction, and crop science, etc. However, most studies have focused on statistical analysis of crack patterns and qualitative study of contributing factors to crack development rather than prediction. Because it is exceedingly difficult to capture the nonlinear processes during desiccation in analytical modelling, most such models handle crack formation without considering variation of material properties with time, and are unattractive to use in realistic modelling. The data obtained from laboratory experiments on clay soil desiccating in moulds were used as a basis to develop a more refined model of desiccation cracking. In this study, the properties, such as matric suction, stiffness and tensile strength of soil, and base adhesion, could be expressed approximately as functions of moisture content. The initial conditions and the development of suction due to desiccation and the varying material properties were inputted to UDEC, a distinct element code, using its internal programming language FISH. The model was able to capture some essential physical aspects of crack evolution in soil contained in moulds with varying lengths, heights, and materials of construction. Extension of this methodology is potentially beneficial not only for modelling desiccation cracking in clay, but also in other systems with evolving material properties such as concrete structures and road pavements. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
52.
A Lagrangian particle‐based method, smooth particle hydrodynamics (SPH), is used in this paper to model the flow of self‐compacting concretes (SCC) with or without short steel fibres. An incompressible SPH method is presented to simulate the flow of such non‐Newtonian fluids whose behaviour is described by a Bingham‐type model, in which the kink in the shear stress vs shear strain rate diagram is first appropriately smoothed out. The viscosity of the SCC is predicted from the measured viscosity of the paste using micromechanical models in which the second phase aggregates are treated as rigid spheres and the short steel fibres as slender rigid bodies. The basic equations solved in the SPH are the incompressible mass conservation and Navier–Stokes equations. The solution procedure uses prediction–correction fractional steps with the temporal velocity field integrated forward in time without enforcing incompressibility in the prediction step. The resulting temporal velocity field is then implicitly projected on to a divergence‐free space to satisfy incompressibility through a pressure Poisson equation derived from an approximate pressure projection. The results of the numerical simulation are benchmarked against actual slump tests carried out in the laboratory. The numerical results are in excellent agreement with test results, thus demonstrating the capability of SPH and a proper rheological model to predict SCC flow and mould‐filling behaviour. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
53.
To predict future river flows, empirical trend projection (ETP) analyses and extends historic trends, while hydroclimatic modelling (HCM) incorporates regional downscaling from global circulation model (GCM) outputs. We applied both approaches to the extensively allocated Oldman River Basin that drains the North American Rocky Mountains and provides an international focus for water sharing. For ETP, we analysed monthly discharges from 1912 to 2008 with non‐parametric regression, and extrapolated changes to 2055. For modelling, we refined the physical models MTCLIM and SNOPAC to provide water inputs into RIVRQ (river discharge), a model that assesses the streamflow regime as involving dynamic peaks superimposed on stable baseflow. After parameterization with 1960–1989 data, we assessed climate forecasts from six GCMs: CGCM1‐A, HadCM3, NCAR‐CCM3, ECHAM4 and 5 and GCM2. Modelling reasonably reconstructed monthly hydrographs (R2 about 0·7), and averaging over three decades closely reconstructed the monthly pattern (R2 = 0·94). When applied to the GCM forecasts, the model predicted that summer flows would decline considerably, while winter and early spring flows would increase, producing a slight decline in the annual discharge (?3%, 2005–2055). The ETP predicted similarly decreased summer flows but slight change in winter flows and greater annual flow reduction (?9%). The partial convergence of the seasonal flow projections increases confidence in a composite analysis and we thus predict further declines in summer (about ? 15%) and annual flows (about ? 5%). This composite projection indicates a more modest change than had been anticipated based on earlier GCM analyses or trend projections that considered only three or four decades. For other river basins, we recommend the utilization of ETP based on the longest available streamflow records, and HCM with multiple GCMs. The degree of correspondence from these two independent approaches would provide a basis for assessing the confidence in projections for future river flows and surface water supplies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
54.
Accurate water level forecasts are essential for flood warning. This study adopts a data‐driven approach based on the adaptive network–based fuzzy inference system (ANFIS) to forecast the daily water levels of the Lower Mekong River at Pakse, Lao People's Democratic Republic. ANFIS is a hybrid system combining fuzzy inference system and artificial neural networks. Five ANFIS models were developed to provide water level forecasts from 1 to 5 days ahead, respectively. The results show that although ANFIS forecasts of water levels up to three lead days satisfied the benchmark, four‐ and five‐lead‐day forecasts were only slightly better in performance compared with the currently adopted operational model. This limitation is imposed by the auto‐ and cross‐correlations of the water level time series. Output updating procedures based on the autoregressive (AR) and recursive AR (RAR) models were used to enhance ANFIS model outputs. The RAR model performed better than the AR model. In addition, a partial recursive procedure that reduced the number of recursive steps when applying the AR or the RAR model for multi‐step‐ahead error prediction was superior to the fully recursive procedure. The RAR‐based partial recursive updating procedure significantly improved three‐, four‐ and five‐lead‐day forecasts. Our study further shows that for long lead times, ANFIS model errors are dominated by lag time errors. Although the ANFIS model with the RAR‐based partial recursive updating procedure provided the best results, this method was able to reduce the lag time errors significantly for the falling limbs only. Improvements for the rising limbs were modest. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
55.
Simulation of soil moisture content requires effective soil hydraulic parameters that are valid at the modelling scale. This study investigates how these parameters can be estimated by inverse modelling using soil moisture measurements at 25 locations at three different depths (at the surface, at 30 and 60 cm depth) on an 80 by 20 m hillslope. The study presents two global sensitivity analyses to investigate the sensitivity in simulated soil moisture content of the different hydraulic parameters used in a one‐dimensional unsaturated zone model based on Richards' equation. For estimation of the effective parameters the shuffled complex evolution algorithm is applied. These estimated parameters are compared to their measured laboratory and in situ equivalents. Soil hydraulic functions were estimated in the laboratory on 100 cm3 undisturbed soil cores collected at 115 locations situated in two horizons in three profile pits along the hillslope. Furthermore, in situ field saturated hydraulic conductivity was estimated at 120 locations using single‐ring pressure infiltrometer measurements. The sensitivity analysis of 13 soil physical parameters (saturated hydraulic conductivity (Ks), saturated moisture content (θs), residual moisture content (θr), inverse of the air‐entry value (α), van Genuchten shape parameter (n), Averjanov shape parameter (N) for both horizons, and depth (d) from surface to B horizon) in a two‐layer single column model showed that the parameter N is the least sensitive parameter. Ks of both horizons, θs of the A horizon and d were found to be the most sensitive parameters. Distributions over all locations of the effective parameters and the distributions of the estimated soil physical parameters from the undisturbed soil samples and the single‐ring pressure infiltrometer estimates were found significantly different at a 5% level for all parameters except for α of the A horizon and Ks and θs of the B horizon. Different reasons are discussed to explain these large differences. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
56.
To a set of well-regarded international scenarios (UNEP’s GEO-4), we have added consideration of the demand, supply, and energy implications related to copper production and use over the period 2010–2050. To our knowledge, these are the first comprehensive metal supply and demand scenarios to be developed. We find that copper demand increases by between 275 and 350% by 2050, depending on the scenario. The scenario with the highest prospective demand is not Market First (a “business as usual” vision), but Equitability First, a scenario of transition to a world of more equitable values and institutions. These copper demands exceed projected copper mineral resources by mid-century and thereafter. Energy demand for copper production also demonstrates strong increases, rising to as much as 2.4% of projected 2050 overall global energy demand. We investigate possible policy responses to these results, concluding that improving the efficiency of the copper cycle and encouraging the development of copper-free energy distribution on the demand side, and improving copper recycling rates on the supply side are the most promising of the possible options. Improving energy efficiency in primary copper production would lead to a reduction in the energy demand by 0.5% of projected 2050 overall global energy demand. In addition, encouraging the shift towards renewable technologies is important to minimize the impacts associated with copper production.  相似文献   
57.
邹艳红  刘雯  黄望 《江苏地质》2016,40(3):372-383
针对深部找矿过程中地质勘探数据增加和动态三维地质建模需要,提出了一种基于版本管理的矿床地质勘探数据库增量更新方法。在分析矿床地质勘探工程数据与三维地质模型映射关系的基础上,建立时序版本和建模版本作为矿床勘探数据增量更新版本标识。针对矿床地质勘探数据库增量更新的版本管理,提出了一种扩展的有向无环图版本管理模型,设计了基于关系数据库的版本管理方法并探讨了其实现过程。以安徽铜陵凤凰山矿床地质勘探数据为例,基于SQL Server数据库系统建立了实例矿床地质勘探版本数据库,以C#编程实现了实例矿床勘探数据库的版本管理,包括版本的建立、查询与显示等功能,通过勘探工程增量更新版本数据建立了三维矿体的动态修正模型,证实了方法的可行性与有效性。  相似文献   
58.
We propose, as a testable hypothesis, a basin-scale approach for interpreting the abundance of in situ produced cosmogenic isotopes, an approach which considers explicitly both the isotope and sediment flux through a drainage basin. Unlike most existing models, which are appropriate for evaluating in situproduced cosmogenic isotope abundance at discrete points on Earth's surface, our model is designed for interpreting isotope abundance in sediment. Because sediment is a mixture of materials, in favourable cases derived from throughout a drainage basin, we suggest that measured isotope abundances may reflect spatially averaged rates of erosion. We investigate the assumptions and behaviour of our model and conclude that it could provide geomorphologists with a relatively simple means by which to constrain the rate of landscape evolution if a basin is in isotopic steady state and if sampled sediments are well mixed.  相似文献   
59.
Piles used for the stabilization of slopes have to be adequately designed to resist the induced lateral loads due to the movement of the unstable slope. In this paper, a numerical method is presented for the analysis of this problem. In this approach, the piles are modelled using beam finite elements. The soil response at the individual piles is modelled using the modulus of subgrade reaction and pile–soil–pile interaction considered using the theory of elasticity. Two case histories, one for single pile and the other for pile group, are analysed which show that the numerical model can predict the general characteristics of the piles reasonably well. The study suggests that the design of the piles based on the computed response from single pile analysis, ignoring group effects, may be unduly conservative.  相似文献   
60.
永进地区位于准噶尔盆地中部,最近发现了多个与走滑断层相关的含油气构造,但关于走滑断层的发育特征及成因机制研究程度不够深入。本文通过三维地震资料精细解释,在研究区三叠系—侏罗系内识别出近东西向、北西西向以及北东东向的三组走滑断裂体系,平面上呈“网格状”展布,剖面上具有不同深度几何学形态差异展布特征。在此基础上基于相似性原理设计四组砂箱模拟对比实验,重现研究区构造演化过程。模拟结果表明,这类走滑断裂的形成与基底先存断层的发育位置有关,是受先存构造和地层属性双重控制的广布式走滑断裂系统,从而建立了研究区的断裂系统成因模式。研究成果对具有相似地质背景地区的走滑断裂成因解释具有借鉴意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号